CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Binhua, JIAN Xiaogang. Numerical simulation and experiment of uniform growth of MPCVD diamond coating[J]. Diamond & Abrasives Engineering, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211
Citation: ZHANG Binhua, JIAN Xiaogang. Numerical simulation and experiment of uniform growth of MPCVD diamond coating[J]. Diamond & Abrasives Engineering, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211

Numerical simulation and experiment of uniform growth of MPCVD diamond coating

doi: 10.13394/j.cnki.jgszz.2023.0211
More Information
  • Received Date: 2023-10-01
  • Rev Recd Date: 2023-11-23
  • Available Online: 2023-12-11
  • Based on the microwave plasma module of multiphysics simulation software COMSOL Multiphysics, a numerical model of hydrogen plasma inside a MPCVD reactor was built. The effect of different height differences Δh between the circular molybdenum support added on the outer side of the substrate and the substrate on the plasma distribution at the surface of the substrate was investigated. The uniformity of plasma distribution was quantitatively analyzed by coefficient of variation, and the microstructure of diamond coating surface was characterized by SEM. The results show that when Δh=0 mm, the uniformity of plasma distribution is the best, the coefficient of variation is 3.998%, and the uniformity of grain distribution and size of diamond coating is significantly improved compared with that without molybdenum support. When Δh< 0 mm, the uniformity of plasma distribution increases with the increase of Δh, and the coefficient of variation decreases from 10.265% to 3.998%. When Δh>0 mm, the uniformity of plasma distribution does not increased but decreases, and the coefficient of variation increases to 10.048%. In addition, when Δh=−2.0 mm, the plasma density on the substrate surface decreases by about 20%, which is not conducive to the growth of diamond coating.


  • loading
  • [1]
    LI G, RAHIM M Z, PAN W, et al. The manufacturing and the application of polycrystalline diamond tools: A comprehensive review [J]. Journal of Manufacturing Processes,2020,56(5):400-416.
    BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities [J]. Diamond & Related Materials,2019(97):107466.
    CHENG H Y, YANG C Y, YANG L C, et al. Effective thermal and mechanical properties of polycrystalline diamond films [J]. Journal of Applied Physics,2018,123(16):165105. doi: 10.1063/1.5016919
    DAR M A, KIM Y S, ANSARI S G, et al. Comparative study of diamond films grown on silicon substrate using microwave plasma chemical vapor deposition and hot-filament chemical vapor deposition technique [J]. Korean Journal of Chemical Engineering,2006,22(5):770-773.
    NAD S, GU Y, ASMUSSEN J. Growth strategies for large and high quality single crystal diamond substrates [J]. Diamond & Related Materials,2015(60):26-34.
    WANG B, WENG J, WANG Z T, et al. Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber [J]. Vacuum,2020,182(1):109659.
    简小刚, 雷强, 张奎林. 热丝CVD金刚石涂层温度场补偿优化研究 [J]. 金刚石与磨料磨具工程,2016,36(6):15-19, 24.

    JIAN Xiaogang, LEI Qiang, ZHANG Kuilin. Optimization of HFCVD diamond coating deposition temperature compensating [J]. Diamond & Abrasives Engineering,2016,36(6):15-19, 24.
    LI L, ZHAO C, ZHANG S, et al. Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder [J]. Journal of Crystal Growth,2022(579):126457. doi: 10.1016/j.jcrysgro.2021.126457
    ASHKIHAZI E E, SEDOV V S, SOVYK D N, et al. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application [J]. Diamond & Related Materials,2017(75):169-175.
    王凤英, 孟宪明, 唐伟忠, 等. 圆柱谐振腔式MPCVD装置中氢、氩微波等离子体分布规律的数值模拟 [J]. 真空与低温,2008(3):157-163. doi: 10.3969/j.issn.1006-7086.2008.03.007

    WANG Fengying, MENG Xianming, TANG Weizhong, et al. Simulation of hydrogen and argon microwave plasmas in a cylindrical microwave plasma chemical vapor deposition reactor [J]. Vacuum & Cryogenics,2008(3):157-163. doi: 10.3969/j.issn.1006-7086.2008.03.007
    安康, 刘小萍, 李晓静, 等. 新型高功率MPCVD金刚石膜装置的数值模拟与实验研究 [J]. 人工晶体学报,2015,44(6):1544-1550. doi: 10.3969/j.issn.1000-985X.2015.06.022

    AN Kang, LIU Xiaoping, LI Xiaojing, et al. Numerical simulation and experimental study of a novel high-power microwave plasma CVD reactor for diamond films deposition [J]. Journal of Synthetic Crystals,2015,44(6):1544-1550. doi: 10.3969/j.issn.1000-985X.2015.06.022
    HASSOUNI K, SILVA F, GICQUEL A. Modelling of diamond deposition microwave cavity generated plasmas [J]. Journal of Physics D:Applied Physics,2010,43(15):153001. doi: 10.1088/0022-3727/43/15/153001
    DERKAOUI N, ROND C, GRIES T, et al. Determining electron temperature and electron density in moderate pressure H2/CH4 microwave plasma [J]. Journal of Physics D:Applied Physics,2014,47(20):205201. doi: 10.1088/0022-3727/47/20/205201
    MESBAHI A, SILVA F, FARHAT S, et al. Hydrodynamics effects in high power density microwave plasma diamond growth reactors [J]. Journal of Physics:D Applied Physics,2013,46(38):385502-385516. doi: 10.1088/0022-3727/46/38/385502
    YAMADA H, CHAYAHARA A, MOKUNO Y. Simplified description of microwave plasma discharge for chemical vapor deposition of diamond [J]. Journal of Applied Physics,2007,101(6):063302. doi: 10.1063/1.2711811
    KEATCH R. Principles of plasma discharges and material processing[M]. New York: Microelectronics Journal, 1996: 804.
    FÜNER M, WILD C, KOIDL P. Simulation and development of optimized microwave plasma reactors for diamond deposition [J]. Surface and Coatings Technology,1999(116/117/118/119):853-862.
    PLEULER E, WILD C, FÜNER M, et al. The CAP-reactor, a novel microwave CVD system for diamond deposition [J]. Diamond and Related Materials,2002,11(3):467-471.
    VIEHLAND L A, MASON E A. Transport properties of gaseous ions over a wide energy range 4 [J]. Atomic Data and Nuclear Data Tables,1995,60(1):37-95. doi: 10.1006/adnd.1995.1004
    SCOTT C D, FARHAT S, GICQUEL A, et al. Determining electron temperature and density in a hydrogen microwave plasma [J]. Journal of Thermophysics and Heat Transfer,1996,10(3):426-435. doi: 10.2514/3.807
    PLANO L S, SURENDRA M, GRAVES D B. Self-consistent dc glow-discharge simulations applied to diamond film deposition reactors [J]. Journal of Applied Physics,1992,71(10):5189-5198. doi: 10.1063/1.350575
    邹帅, 唐中华, 吉亮亮, 等. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量 [J]. 物理学报,2012,61(7):075204. doi: 10.7498/aps.61.075204

    ZOU Shuai, TANG Zhonghua, JI Liangliang, et al. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma [J]. Acta Physica Sinica,2012,61(7):075204. doi: 10.7498/aps.61.075204
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (393) PDF downloads(79) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint