Preparation of polycrystalline diamond films by MPCVD at high plasma power density
-
摘要: 通过自制的MPCVD双基片台设备,在微波功率为1400 W保持不变及中高气压,等离子体功率密度为357.5~807.4 W/cm3,基片温度为850 ± 30 ℃,CH4体积分数为1.0%~1.5%,沉积速率为1~8 μm/h条件下,在直径11.5 mm的硅基片上沉积不同质量的多晶金刚石膜,并通过光谱仪、光学显微镜、拉曼光谱仪对等离子体中的氢原子及含碳基团、多晶薄膜的形貌及质量进行表征。结果表明:随着等离子体功率密度上升,等离子体椭球中的氢原子基团和含C的活性基团强度增加,金刚石膜生长速率大幅度提高,金刚石膜纯度也大幅度提升。在气压为21 kPa,等离子体功率密度为807.4 W/cm3,基片温度为850±30 ℃,生长时间为150 h,CH4体积分数为1.0%及氢气流量为200 mL/min的条件下,金刚石膜的生长速率达到5 μm/h,金刚石膜厚达752.0 μm,金刚石拉曼峰的半高宽为6.48 cm−1,且生长的金刚石膜质量良好。
-
关键词:
- 微波等离子体化学气相沉积 /
- 金刚石膜 /
- 等离子体功率密度 /
- 沉积速率 /
- 薄膜质量
Abstract: Through the self-made MPCVD dual-substrate platform equipment, the microwave power was 1 400 W and the pressure was medium to high, the plasma power density was 357.5~807.4 W/cm3, the substrate temperature was 850 ± 30 ℃, the volume fraction of CH4 was 1.0%~1.5% and the deposition rate was 1~8 μm/h, the polycrystalline diamond film of different quality was deposited on the silicon substrate with a diameter of 11.5 mm. The hydrogen atoms and the C-containing groups in the plasma, the morphology and the quality of polycrystalline films were characterized by spectrometer, optical microscope and Raman spectrometer. The results show that with the increases of plasma power density, the strength of hydrogen atom group and active C-containing group in plasma ellipsoid increase, the growth rate and the purity of diamond film are greatly improved. When the air pressure is 21 kPa, the plasma power density is 807.4 W/cm3, the substrate temperature is 850 ± 30 ℃, the growth time is 150 h, the CH4 volume fraction is 1.0% and the hydrogen flow rate is 200 mL/min, the growth rate of the diamond film reaches 5 μm/h, the thickness of the diamond film reaches 752.0 μm, the FWHM of the diamond Raman peak is 6.48 cm−1, and the quality of the grown diamond film is good. -
表 1 金刚石膜生长参数
Table 1. Diamond film growth parameters
条件及编号 气压
p / kPa等离子体功率密度
η / (W·cm−3)基片温度
θ / ℃生长时间
t / hCH4体积分数
φ / %H2流量
qv / (mL·min−1)金刚石膜厚度
L / μm1# 15 357.5 850±30 24 1.5 200 26.0 2# 16 416.7 72 1.5 158.4 3# 18 527.5 16 1.5 48.0 4# 19 596.7 36 1.5 144.0 5# 20 686.8 170 1.5 1 020.0 6# 21 100 1.5 801.0 7# 807.4 50 1.2 302.0 8# 150 1.0 752.0 表 2 1#~8# 样品的拉曼峰半高宽
Table 2. FWHM of Raman peak of 1#~8# sample
样品 拉曼峰半高宽 d / (cm−1) 1# 11.64 2# 7.94 3# 7.90 4# 7.58 5# 7.79 6# 6.87 7# 6.74 8# 6.48 -
[1] SILVA F, HASSOUNI K, BONNIN X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition [J]. Journal of Physics Condensed Matter,2009,21(36):364202. doi: 10.1088/0953-8984/21/36/364202 [2] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Developments of elemental technologies to produce inch-size single-crystal diamond wafer [J]. Diamond and Related Materials,2011,20(4):616-619. doi: 10.1016/j.diamond.2011.01.001 [3] 冉均国, 王灿丽, 苟立, 等. 引入CO2提高金刚石薄膜的沉积速率 [J]. 稀有金属材料与工程,2007,36(z1):896-899. doi: 10.3321/j.issn:1002-185x.2007.z1.253RAN Junguo, WANG Canli, GOU Li, et al. Introducing CO2 to increase the deposition rate of diamond films [J]. Rare Metal Materials and Engineering,2007,36(z1):896-899. doi: 10.3321/j.issn:1002-185x.2007.z1.253 [4] GOODWIN D G. Simulations of high-rate diamond synthesis: Methyl as growth species [J]. Applied Physics Letters,1991,59(3):277-279. doi: 10.1063/1.105620 [5] HEMAWAN K W, GROTJOHN T A, REINHARD D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density [J]. Diamond and Related Materials,2010,19(12):1446-1452. [6] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities [J]. Diamond & Related Materials,2019,97:107466. [7] 翁俊, 刘繁, 孙祁, 等. 形核密度与氢等离子体处理对沉积CVD金刚石薄膜的影响 [J]. 真空电子技术,2016(3):35-39. doi: 10.3969/j.issn.1002-8935.2016.03.009WENG Jun, LIU Fan, SUN Qi, et al. The effect of nucleation density and hydrogen plasma treatment on the deposition of CVD diamond films [J]. Vacuum Electronics,2016(3):35-39. doi: 10.3969/j.issn.1002-8935.2016.03.009 [8] TERAJI T. Chemical vapor deposition of homoepitaxial diamond films [M]. New York: John Wiley & Sons, Ltd., 2010. [9] DERKAOUI N, ROND C, HASSONI K, et al. Spectroscopic analysis of H2/CH4 microwave plasma and fast growth rate of diamond single crystal [J]. Journal of Applied Physics,2014,115(23):233301-233308. doi: 10.1063/1.4883955 [10] STERNSCHULTE H, SCHRECK M, STRITZKER B. In situ characterisation of CVD diamond growth under H2S addition by optical emission spectroscopy, mass spectroscopy and laser reflection interferometry [J]. Diamond & Related Materials,2002,11(3/4/5/6):296-300. [11] GONON P, GHEERAERT E, DENEUVILLE A, et al. Raman study of diamond films deposited by MPCVD: Effect of the substrate position [J]. Thin Solid Films,1995,256(1/2):13-22. doi: 10.1016/0040-6090(94)06306-0 [12] BAUER T, SCHRECK M, STEMSCHULTE H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates [J]. Diamond & Related Materials,2005,14(3/4/5/6/7):266-271. [13] 史新伟, 安子凤, 张水, 等. 甲烷浓度对金刚石薄膜质量的影响 [J]. 真空,2011(5):64-67.SHI Xinwei, AN Zifeng, ZHANG Shui, et al. The influence of methane concentration on the quality of diamond film [J]. Vacuum,2011(5):64-67. -