CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Python语言的超薄金刚石切割片建模与SiC晶片切割仿真

何艳 李翔 高兴军 凡林 刘铭 徐子成

何艳, 李翔, 高兴军, 凡林, 刘铭, 徐子成. 基于Python语言的超薄金刚石切割片建模与SiC晶片切割仿真[J]. 金刚石与磨料磨具工程, 2023, 43(5): 621-631. doi: 10.13394/j.cnki.jgszz.2003.0001
引用本文: 何艳, 李翔, 高兴军, 凡林, 刘铭, 徐子成. 基于Python语言的超薄金刚石切割片建模与SiC晶片切割仿真[J]. 金刚石与磨料磨具工程, 2023, 43(5): 621-631. doi: 10.13394/j.cnki.jgszz.2003.0001
HE Yan, LI Xiang, GAO Xingjun, FAN Lin, LIU Ming, XU Zicheng. Modeling of ultra-thin diamond slice and simulation of SiC wafer cutting based on Python language[J]. Diamond & Abrasives Engineering, 2023, 43(5): 621-631. doi: 10.13394/j.cnki.jgszz.2003.0001
Citation: HE Yan, LI Xiang, GAO Xingjun, FAN Lin, LIU Ming, XU Zicheng. Modeling of ultra-thin diamond slice and simulation of SiC wafer cutting based on Python language[J]. Diamond & Abrasives Engineering, 2023, 43(5): 621-631. doi: 10.13394/j.cnki.jgszz.2003.0001

基于Python语言的超薄金刚石切割片建模与SiC晶片切割仿真

doi: 10.13394/j.cnki.jgszz.2003.0001
基金项目: 辽宁省博士科研启动基金计划(2022-BS-292); 辽宁省教育厅科学技术研究(LJKZ0383); 辽宁石油化工大学引进人才科研启动基金(2020XJJL-012)。
详细信息
    作者简介:

    何艳,女,1991年生,博士、讲师。主要研究方向:半导体材料的高效加工技术、纳米制造。E-mail:1422017226@qq.com

    通讯作者:

    高兴军,男,1979年生,硕士、副教授。主要研究方向:精密磨削、纳米制造。E-mail: gaoxingjun@lnpu.edu.cn

  • 中图分类号: TQ164; TG58; TG74; TH161

Modeling of ultra-thin diamond slice and simulation of SiC wafer cutting based on Python language

  • 摘要: 为改善SiC晶片在切割过程中存在的边缘崩边和亚表面损伤等问题,采用Python语言与Abaqus有限元分析软件相结合的方法建立超薄金刚石切割片切割SiC晶片的模型,研究切割参数对切割过程中的切割力、切割温度、晶片切割边缘形貌、切割边缘损伤宽度以及晶片亚表面损伤深度的影响。结果表明:切割力、切割温度与切割深度正相关,切割边缘损伤程度和亚表面损伤深度存在最优值。在切割深度为6 μm时,SiC晶片的切割效果最好,其切割边缘损伤宽度为8 μm,损伤面积为4 905.56 μm2,亚表面损伤深度为10.67 μm,损伤面积为7 022.18 μm2。在切割速度为60~121 m/s的高速切割阶段,切割速度对切割力、晶片的温度、晶片切割边缘形貌及亚表面损伤均无显著影响。

     

  • 图  1  随机四边形切割工具

    Figure  1.  Random quadrilateral cutting tool

    图  2  磨粒切割流程图

    Figure  2.  Flow chart of abrasive cutting

    图  3  磨粒模型库

    Figure  3.  Abrasives model library

    图  4  磨粒出刃高度概率示意图

    Figure  4.  Probability diagram of abrasive grain protrusion height

    图  5  切割片表面磨粒分布模型

    Figure  5.  Model of abrasive particle distribution on the surface of cutting slice

    图  6  超薄金刚石切割片切割SiC晶片模型

    Figure  6.  Model of cutting SiC wafer with ultra-thin diamond slice

    图  7  切割深度对切割力的影响

    Figure  7.  Effect of cutting depths on cutting forces

    图  8  切割速度对切割力的影响

    Figure  8.  Effect of cutting speeds on cutting forces

    图  9  切割片的磨粒表面温度

    Figure  9.  Abrasive surface temperatures of cutting slices

    图  10  SiC晶片的平均温度与最高温度

    Figure  10.  Average and maximum temperature of SiC wafer

    图  11  切割深度对SiC晶片切割边缘形貌的影响

    Figure  11.  Effect of cutting depths on cutting edge morphology of SiC wafer

    图  12  切割深度对SiC晶片切割边缘损伤宽度和损伤面积的影响

    Figure  12.  Effect of cutting depths on damage widths and damage area of cutting edge of SiC wafer

    图  13  切割速度对SiC晶片切割边缘形貌的影响

    Figure  13.  Effect of cutting speeds on cutting edge morphology of SiC wafer

    图  14  切割速度对SiC晶片边缘损伤宽度和损伤面积的影响

    Figure  14.  Effect of cutting speeds on damage widths and damage area of cutting edge of SiC wafer

    图  15  不同切割深度下SiC晶片亚表面损伤切片云图

    Figure  15.  Slice nephogram of SiC wafer subsurface damage at different cutting depths

    图  16  切割深度对SiC晶片亚表面损伤的影响

    Figure  16.  Effect of cutting depths on the subsurface damage of SiC wafer

    表  1  常温下SiC的物理性能参数

    Table  1.   Physical property parameters of SiC at room temperature

    参数 取值
    密度 ρ0 / (kg·m−3) 3 215
    剪切模量 G / GPa 170
    归一化无损强度常数 A 0.96
    无损强度常数 N 0.65
    归一化断裂强度常数 B 0.35
    断裂强度常数 M1 1
    依赖于应变率的强度常数 C 0.009
    参考应变率 $ \dot{\varepsilon } $0 1
    最大拉伸静水压应力 T / GPa 0.75
    最大归一化无损强度 σimax 1.24
    最大归一化断裂强度 σfmax 0.132
    Hugoniot弹性极限下的压应力 HEL / GPa 11.7
    HEL下的压应力分量 PHEL / GPa 7
    弹性能转化为静水压能的损失 β 1
    损伤系数 D1 0.48
    损伤指数 D2 0.48
    最大失效应变 $ {\stackrel{-}{\varepsilon }}_{f,\mathrm{m}\mathrm{a}\mathrm{x}}^{pl} $ 1.2
    最小失效应变 $ {\stackrel{-}{\varepsilon }}_{f,\mathrm{m}\mathrm{i}\mathrm{n}}^{pl} $ 0
    失效判据 FS 0.2
    损伤标志 D 0
    体积模量 K1 / GPa 220
    第二压力常数 K2 / GPa 360
    第三压力常数 K3 / GPa 0
    下载: 导出CSV

    表  2  切割过程的参数设定

    Table  2.   Parameter setting of cutting process

    参数 类型或取值
    切割片基体尺寸 0.20 mm × 0.50 mm × 0.02 mm
    切割深度 ap / μm 3,6,9,12,15,18
    切割速度 vs / (m·s−1) 60,76,85,91,106,121
    工件尺寸 1.0 mm × 0.4 mm × 0.1 mm
    初始温度 t / ℃ 20
    下载: 导出CSV
  • [1] XUN Q, XUN B, LI Z, et al. Application of SiC power electronic devices in secondary power source for aircraft [J]. Renewable and Sustainable Energy Reviews,2017,70:1336-1342. doi: 10.1016/j.rser.2016.12.035
    [2] WRIGHT N, HORSFALL A. SiC sensors: A review [J]. Journal of Physics D: Applied Physics,2007,40(20):6345. doi: 10.1088/0022-3727/40/20/S17
    [3] CHOI P H, KIM Y P, KIM M-S, et al. Side-illuminated photoconductive semiconductor switch based on high purity semi-insulating 4H-SiC [J]. IEEE Transactions on Electron Devices,2021,68(12):6216-6221. doi: 10.1109/TED.2021.3117535
    [4] MATSUNAMI H. Fundamental research on semiconductor SiC and its applications to power electronics [J]. Proceedings of the Japan Academy, Series B,2020,96(7):235-254. doi: 10.2183/pjab.96.018
    [5] LEWKE D, DOHNKE K O, ZUHLKE H U, et al. Thermal laser separation: A novel dicing technology fulfilling the demands of volume manufacturing of 4H-SiC devices [J]. Materials Science Forum,2015,821/823:528-532. doi: 10.4028/www.scientific.net/MSF.821-823.528
    [6] YANG Y L, LIU J L, CHEN G W, et al. Highly reliable four-point bending test using stealth dicing method for adhesion evaluation: 2019 International Conference on Electronics Packaging (ICEP) [C]. Niigata: IEEE, 2019.
    [7] OKADA T, TOMITA T, KATAYAMA H, et al. Local melting of Au/Ni thin films irradiated by femtosecond laser through GaN [J]. Applied Physics A,2019,125(10):1-6. doi: 10.1007/s00339-019-2982-1
    [8] ZHANG Z, WEN Z, SHI H, et al. Dual laser beam asynchronous dicing of 4H-SiC wafer [J]. Micromachines,2021,12(11):1331. doi: 10.3390/mi12111331
    [9] GE M, ZHU H, HUANG C, et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments [J]. Materials Science in Semiconductor Processing,2018,74:261-266. doi: 10.1016/j.mssp.2017.10.027
    [10] FUJITA T, IZUMI Y, WATANABE J. Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing,2019,13(4):JAMDSM0073. doi: 10.1299/jamdsm.2019jamdsm0073
    [11] CVETKOVIĆ S, MORSBACH C, RISSING L. Ultra-precision dicing and wire sawing of silicon carbide (SiC) [J]. Microelectronic Engineering,2011,88(8):2500-2504. doi: 10.1016/j.mee.2011.02.026
    [12] JI S, LIU L, ZHAO J, et al. Finite element analysis and simulation about microgrinding of SiC [J]. Journal of Nanomaterials,2015(5):1-9. doi: 10.1155/2015/575398
    [13] WEI J, WANG H, LIN B, et al. A force model in single grain grinding of long fiber reinforced woven composite [J]. The International Journal of Advanced Manufacturing Technology,2019,100(1):541-552. doi: 10.1007/s00170-018-2719-x
    [14] GU Y, ZHU W, LIN J, et al. Subsurface damage in polishing process of silicon carbide ceramic [J]. Materials,2018,11(4):506. doi: 10.3390/ma11040506
    [15] CHAI P, LI S, LI Y. Modeling and experiment of the critical depth of cut at the ductile–brittle transition for a 4H-SiC single crystal [J]. Micromachines,2019,10(6):382. doi: 10.3390/mi10060382
    [16] SONG K, XIAO G, CHEN S, et al. Analysis of thermal-mechanical causes of abrasive belt grinding for titanium alloy [J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3241-3260. doi: 10.1007/s00170-021-06795-z
    [17] TANG A, GUO W, YUAN Z, et al. Simulation analysis on cutting forces based on surface topography of fixed abrasive wire saw [J]. Materials Science in Semiconductor Processing,2021,132:105900. doi: 10.1016/j.mssp.2021.105900
    [18] LI X, GAO Y, GE P, et al. The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon [J]. Materials Science in Semiconductor Processing,2019,91:316-326. doi: 10.1016/j.mssp.2018.12.004
    [19] YANG Z, HE D, ZHANG Y, et al. Determination of the grinding force on optical glass based on a diamond wheel with an ordered arrangement of abrasive grains [J]. The International Journal of Advanced Manufacturing Technology,2021,115(4):1237-1248. doi: 10.1007/s00170-021-07204-1
    [20] AURICH J C, BRAUN O, WARNECKE G, et al. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation [J]. CIRP Annals,2003,52(1):275-280. doi: 10.1016/S0007-8506(07)60583-6
    [21] HERZENSTIEL P, AURICH J. CBN-grinding wheel with a defined grain pattern–extensive numerical and experimental studies [J]. Machining Science and Technology,2010,14(3):301-322. doi: 10.1080/10910344.2010.511574
    [22] LI H, YU T, ZHU L, et al. Analysis of loads on grinding wheel binder in grinding process: Insights from discontinuum-hypothesis-based grinding simulation [J]. The International Journal of Advanced Manufacturing Technology,2015,78(9/10/11/12):1943-1960. doi: 10.1007/s00170-014-6767-6
    [23] LI H, YU T, ZHU L, et al. Modeling and simulation of grinding wheel by discrete element method and experimental validation [J]. The International Journal of Advanced Manufacturing Technology,2015,81(9):1921-1938. doi: 10.1007/s00170-015-7205-0
    [24] CHEN H P, CAO H Y, WU R L, et al. Modeling and simulation of high-speed cylindrical grinding based on 3D grinding wheel topography: MTMCE 2019 [C]. Wuhan: IOP Publishing, 2019.
    [25] CHEN C, TANG J, CHEN H, et al. Research about modeling of grinding workpiece surface topography based on real topography of grinding wheel [J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):2411-2421. doi: 10.1007/s00170-017-0668-4
    [26] ZHANG Y, FANG C, HUANG G, et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding [J]. International Journal of Machine Tools and Manufacture,2018,127:14-27. doi: 10.1016/j.ijmachtools.2018.01.002
    [27] WANG Y, WANG H, WEI J, et al. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: Modeling, experimental verification and material removal mechanism [J]. Ceramics International,2019,45(13):15920-15927. doi: 10.1016/j.ceramint.2019.05.100
    [28] MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives [M]. New York: Industrial Press, 2008.
    [29] HOU Z B, KOMANDURI R. On the mechanics of the grinding process–Part I. Stochastic nature of the grinding process [J]. International Journal of Machine Tools and Manufacture,2003,43(15):1579-1593. doi: 10.1016/S0890-6955(03)00186-X
    [30] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA: Proceedings of the 4th European LS-DYNA users conference [C]. Germany: Ulm, 2003.
    [31] ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression [J]. Journal of Engineering Materials and Technology,2019,141(1):011007. doi: 10.1115/1.4040591
    [32] DAI J, SU H, HU H, et al. The influence of grain geometry and wear conditions on the material removal mechanism in silicon carbide grinding with single grain [J]. Ceramics International,2017,43(15):11973-11980. doi: 10.1016/j.ceramint.2017.06.047
    [33] ZHOU W, SU H, DAI J, et al. Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding [J]. Ceramics International,2018,44(17):21451-21460. doi: 10.1016/j.ceramint.2018.08.206
    [34] HUANG Y, WANG M, LI J, et al. Effect of abrasive particle shape on the development of silicon substrate during nano-grinding [J]. Computational Materials Science,2021,193:110420. doi: 10.1016/j.commatsci.2021.110420
    [35] LI P, GUO X, YUAN S, et al. Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations [J]. Applied Surface Science,2021,554(2008):149668. doi: 10.1016/j.apsusc.2021.149668
    [36] WAN L, LI L, DENG Z, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics [J]. Journal of Manufacturing Processes,2019,47:41-51. doi: 10.1016/j.jmapro.2019.09.024
    [37] SURATWALA T, STEELE R, SHEN N, et al. Lateral cracks during sliding indentation on various optical materials [J]. Journal of the American Ceramic Society,2020,103(2):1343-1357. doi: 10.1111/jace.16787
    [38] NIAN D. Effects of depth of cutting on damage interferences during double scratching on single crystal SiC [J]. Crystals,2020,10(6):519. doi: 10.3390/cryst10060519
    [39] DUAN N, YU Y, SHI W, et al. Investigation on diamond damaged process during a single-scratch of single crystal silicon carbide [J]. Wear,2021,486:204099. doi: 10.1016/j.wear.2021.204099
    [40] ZHANG B, YIN J. The ‘skin effect’of subsurface damage distribution in materials subjected to high-speed machining [J]. International Journal of Extreme Manufacturing,2019,1(1):126-137. doi: 10.1088/2631-7990/ab103b
    [41] 李思, 晏永飞, 刘慧轩, 等. 高压磨料水射流切割低碳合金钢的试验研究 [J]. 辽宁石油化工大学学报,2019,39(5):88-92. doi: 10.3969/j.issn.1672-6952.2019.05.016
    [42] ZHU D, YAN S, LI B. Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness [J]. Computational Materials Science,2014,92:13-21. doi: 10.1016/j.commatsci.2014.05.019
    [43] WANG P, GE P, GE M, et al. Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw [J]. Ceramics International,2019,45(1):384-393. doi: 10.1016/j.ceramint.2018.09.178
    [44] GAO Y, CHEN Y, GE P, et al. Study on the subsurface microcrack damage depth in electroplated diamond wire saw slicing SiC crystal [J]. Ceramics International,2018,44(18):22927-22934. doi: 10.1016/j.ceramint.2018.09.088
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  121
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-02-06
  • 录用日期:  2023-03-01
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回