Abstract:
Based on the cutting fluid simulation function of AdvantEdge, 2D turning simulation is carried out for vermicular cast iron under different cutting fluid pressures. The variation of chip deformation, cutting temperature, tool-chip friction and cutting force in the cutting process ae studied. The cooling and lubrication mechanism of high-pressure cutting fluid are also analyzed. The simulation results show that the increase of cutting fluid pressure can reduce the lengths of the sticking zone and the sliding friction zone, thereby increasing the heat exchange rate between workpiece and fluid. At the same time, the high-pressure cutting fluid can overcome the gas protective layer formed by the Leidenfrost effect, achieving better heat convection and cooling. However, the increased pressure does not lead to better cooling effect and the cutting fluid pressure should be 15 to 18 MPa for good cooling and lubrication at low energy cost.