Research on ultrasonic vibration grinding technology of SiCp/Al composites
-
摘要: 针对SiCp/Al材料传统研磨方法加工困难,研磨工具磨损快,加工后难以获得高质量表面等问题,采用超声振动研磨加工方法可以显著改善其加工效果。通过对单磨粒的超声振动轨迹进行分析,得出其运动轨迹为空间椭圆形,可实现磨粒与工件间歇性的接触加工;采用树脂结合剂金刚石磨头对SiC体积分数为40%的SiCp/Al材料进行超声振动研磨加工试验,在不同的主轴转速n、进给速度v和研磨深度ap以及磨料粒度d下,利用单因素试验法对工件进行研磨,检测加工后工件表面粗糙度,得出各工艺参数对工件表面粗糙度Sa值的影响规律。结果表明:超声振动研磨后的工件表面粗糙度Sa值相较于普通研磨后的79 nm下降为45 nm;超声振动研磨后工件表面粗糙度随n的增大先减小后增大,转速为1 800 r/min时,粗糙度值最小;工件表面粗糙度随v和ap的增大而增大,随着d的减小而减小。并得出试验参数内的最优参数组合为:n=1 800 r/min,v=5 mm/min,ap=1 μm,d=4.5 μm。
-
关键词:
- SiCp/Al复合材料 /
- 金刚石磨头 /
- 超声振动研磨 /
- 表面粗糙度
Abstract: In view of the difficulties in processing SiCp/Al materials by traditional grinding methods, the rapid wear of grinding tools, and the difficulties in obtaining high surface quality after processing, the ultrasonic vibration grinding method can significantly improve the processing effect. By analyzing the ultrasonic vibration trajectory of a single abrasive particle, it is concluded that its movement trajectory is a space ellipse shape, which can realize intermittent contact processing between the abrasive particle and the workpiece. The ultrasonic vibration grinding test is carried out on the SiCp/Al material with a volume fraction of 40% by using a resin-bonded diamond grinding head. Under different spindle speeds n, feed rates v, grinding depths ap and abrasive particle sizes d, the single-factor test method is used to detecte surface roughness of the workpiece. How each process parameter influences the Sa value of the workpiece surface roughness is obtained. And it is verified that ultrasonic vibration grinding of SiCp/Al can effectively improve the surface quality. The surface roughness of workpiece after ultrasonic vibration grinding decreases to 45 nm compared with 79 nm after ordinary grinding. The surface roughness of the workpiece first decreases and then increases with the increase of n, and it is the smallest when the speed is 1 800 r/min. The surface roughness of the workpiece increases with the increase of v and ap, and decreases with the decrease of d. And the optimal parameter combination in the test parameters is obtained: n=1 800 r/min, v=5 mm/min, ap=1 μm,d=4.5 μm. -
表 1 超声振动试验参数
Table 1. Experimental parameters of ultrasonic vibration
参数 参数值 主轴转速n / (r·min−1) 600,1 200,1 800,2 400,3 000 进给速度v / (mm·min−1) 5,10,20,40,60 研磨深度ap / μm 1,2,3,4 磨料粒度d / μm 4.5,5.5,6.5 频率f / kZ 20 z方向振幅A / μm 10.4 x方向振幅A / μm 4.5 -
[1] 王兴文. 超声激励下的SiCp/AL铣削机理及表面质量研究 [D]. 太原: 中北大学, 2018.WANG Xingwen. SiCp/Al milling mechanism and surface quality under ultrasonic excitation [D]. Taiyuan: North University of China, 2018. [2] 王进峰, 储开宇, 赵久兰, 等. SiCp/Al复合材料切削仿真及实验研究 [J]. 人工晶体学报,2016,45(7):1756-1764. doi: 10.3969/j.issn.1000-985X.2016.07.008WANG Jinfeng, CHU Kaiyu, ZHAO Jiulan, et al. Study on cutting simulation and experiment of SiCp/Al composites [J]. Journal of Synthetic Crystals,2016,45(7):1756-1764. doi: 10.3969/j.issn.1000-985X.2016.07.008 [3] GU P, ZHU C M, TAO Z, et al. A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding [J]. The International Journal of Advanced Manufacturing Technology,2020,109(5/6):1563-1581. [4] 程思扬, 曹琪, 包建勋, 等. 中高体积分数SiCp/Al复合材料研究进展 [J]. 中国光学,2019,12(05):1064-1075. doi: 10.3788/co.20191205.1064CHENG Siyang, CAO Qi, BAO Jianxun, et al. Research and development of medium/high volume fraction SiCp/Al composites [J]. Chinese Optics,2019,12(05):1064-1075. doi: 10.3788/co.20191205.1064 [5] YIN G, GONG Y, LI Y, et al. Modeling and evaluation in grinding of SiCp/Al composites with single diamond grain [J]. International Journal of Mechanical Sciences,2019,163:105137. doi: 10.1016/j.ijmecsci.2019.105137 [6] 王文博. SiCp/Al复合材料磨削加工表面缺陷检测技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.WANG Wenbo. Research on surface defect detection technology in grinding of SiCp/Al composites [D]. Harbin: Harbin Institute of Technology, 2021. [7] 潘丽娟. 切削高体积分数SiCp/Al复合材料表面粗糙度实验研究 [D]. 北京: 华北电力大学, 2021.PAN Lijuan. Experimental study on surface roughness of cutting SiCp/Al composites with high volume fraction [D]. Beijing: North China Electric Power University, 2021. [8] GU Y, DUAN X, LIN J, et al. Design, analysis, and testing of a novel 2-DOF vibration-assisted polishing device driven by the piezoelectric actuators [J]. The International Journal of Advanced Manufacturing Technology,2020,111(1):471-493. [9] DONG Z, ZHENG F, ZHU X, et al. Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction [J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):2827-2839. [10] ZHAO B, CHANG B, WANG X B, et al. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics [J]. Ceramics International,2019,45(18):24865-24877. doi: 10.1016/j.ceramint.2019.08.273 [11] 许陆昕. 碳化硅陶瓷超声振动磨削表面质量研究 [D]. 苏州: 苏州科技大学, 2019.XU Luxin. Study on surface quality of ultrasonic vibration grinding of Sic ceramics [D]. Suzhou: Suzhou University of Science and Technology, 2019. [12] 郑伟, 刘岭, 张群, 等. SiCp/Al复合材料超声磨削表面缺陷形成机理仿真研究 [J]. 固体火箭技术,2019,42(6):793-800.ZHENG Wei, LIU Ling, ZHANG Qun, et al. Simulation of formation mechanism of machined surface defects in ultrasonic grinding of SiCp/Al composites [J]. Journal of Solid Rocket Technology,2019,42(6):793-800. [13] ZHA H, FENG P, ZHANG J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2018,97(5):2099-2109. [14] LEI X, XIANG D, PENG P, et al. Establishment of dynamic grinding force model for ultrasonic-assisted single abrasive high-speed grinding [J]. Journal of Materials Processing Technology,2022,300:117420. doi: 10.1016/j.jmatprotec.2021.117420 [15] LU H, ZHU L, YANG Z, et al. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling [J]. International Journal of Mechanical Sciences,2021,208:106681. doi: 10.1016/j.ijmecsci.2021.106681 [16] 周岩. 碳化硅振动辅助抛光表面/亚表面损伤的研究 [D]. 长春: 长春工业大学, 2020.ZHOU Yan. Research on surface/subsurface damage of silicon carbide in vibration-assisted polishing [D]. Changchun: Changchun University of Technology, 2020. -