Wear monitoring of diamond saw wire based on YOLOv5 and DeepSORT
-
摘要:
为提高金刚石线锯切割的效率和质量,满足实时监测锯丝磨损的需求,提出一种基于改进的YOLOv5检测算法,在YOLOv5的基础上融合坐标注意力机制和BiFPN模块,使检测精确度、召回率、平均精度均值分别提高1.7%、3.7%、3.2%,能够有效检测不同磨损程度的磨粒;再连接DeepSORT多目标跟踪算法,设置虚拟检测线,统计不同磨损程度的磨粒数量,进而监测金刚石锯丝的磨损情况。
Abstract:In order to improve the efficiency and quality of diamond wire saw cutting and meet the demand of real-time monitoring of saw wire wear, a detection algorithm based on improved YOLOv5 was proposed. The algorithm combined coordinate attention mechanism and BiFPN module on the basis of YOLOv5. The detection accuracy, recall rate and average accuracy were increased by 1.7%, 3.7% and 3.2% respectively. Abrasive particles with different wear degrees can be effectively detected. Besides, the DeepSORT multi-target tracking algorithm was connected to set up a virtual detection line, count the number of abrasive particles with different wear degrees, and monitor the wear of diamond saw wire.
-
Key words:
- diamond saw wire /
- target detection /
- YOLOv5 /
- DeepSORT
-
表 1 消融对比试验
Table 1. Ablation experiments
模型 CA BiFPN 精确度 Pre / % 召回率 Rre / % 平均精度值 MmAP / % 推理时间 t / (ms·帧−1) YOLOv5 × × 79.8 81.1 84.8 8 模型1 √ × 81.2 83.2 87.5 8 模型2 × √ 80.4 83.6 87.0 9 最终模型 √ √ 81.5 84.8 88.0 10 -
[1] 倪永明, 黎振, 李国和. 蓝宝石加工过程中金刚石线锯生命周期表面形貌及抗拉极限载荷实验研究 [J]. 金刚石与磨料磨具工程,2017,37(4):62-66. doi: 10.13394/j.cnki.jgszz.2017.4.0013NI Yongming, LI Zhen, LI Guohe. Experimental study on life-cycle surface morphology and tensile limit load of diamond wire saw in sapphire machining [J]. Diamond & Abrasives Engineering,2017,37(4):62-66. doi: 10.13394/j.cnki.jgszz.2017.4.0013 [2] 黄波, 高玉飞, 葛培琪. 金刚石线锯切割单晶硅表面缺陷与锯丝磨损分析 [J]. 金刚石与磨料磨具工程,2011,31(1):53-57. doi: 10.3969/j.issn.1006-852X.2011.01.013HUANG Bo, GAO Yufei, GE Peiqi. Surface sefects and wire wear analysis of diamond wire saw cutting monocrystalline silicon [J]. Diamond & Abrasives Engineering,2011,31(1):53-57. doi: 10.3969/j.issn.1006-852X.2011.01.013 [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, June 23-28, 2014 [C]. Washington: IEEE Computer Society, 2014: 580-587. [4] HE K M, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. doi: 10.1109/TPAMI.2015.2389824 [5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, June 27-30, 2016 [C]. Washington: IEEE Computer Society, 2016: 779-788. [7] REDMON J, FARHADI A. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, July 21-26, 2017 [C]. Washington: IEEE Computer Society, 2017: 6517-6525. [8] REDMON J, FARHADI A. YOLOv3: An incremental improvement [J]. Computer Vision and Pattern Recognition, 2018, 276(7): 126-134. [9] LIU W, ANGUELOV D, ERHAN D, et al. European conference on computer vision, Amsterdam, October 11-14, 2016 [C]. Berlin, Heidelberg: Springer, 2016: 21-37. [10] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述 [J]. 计算机工程与应用,2021,57(20):64-72.ZHANG Chengjia, ZHU Lei, YU Lu. A review of attention mechanisms in convolutional neural networks [J]. Computer Engineering and Applications,2021,57(20):64-72. [11] HU J, SHEN L, SUN G. Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, June 18-22, 2018 [C]. Washington: IEEE Computer Society, 2018: 7132-7141. [12] WANG Q, WU B, ZHU P, et al. IEEE conference on computer vision and pattern recognition, Seattle, June 13-19 2020 [C]. Washington: IEEE Computer Society, 2020: 11531-11539. [13] HOU Q B, ZHOU D Q, FENG J S. IEEE conference on computer vision and pattern recognition, Nashville, June 20-25, 2021 [C]. Washington: IEEE Computer Society, 2021: 13713-13722. [14] TAN M, PANG R, LE Q V. IEEE conference on computer vision and pattern recognition, Seattle, June 13-19 2020 [C]. Washington: IEEE Computer Society, 2020:10778-10787. [15] WOJKE N, BEWLEY A, PAULUS D. IEEE international conference on image processing, Beijing, September 17-20, 2017 [C]. Washington: IEEE Computer Society, 2018: 3645-3649. -