CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于永磁体的磁流变抛光励磁装置设计与仿真

曹顺涛 陈观慈 李明春

曹顺涛, 陈观慈, 李明春. 基于永磁体的磁流变抛光励磁装置设计与仿真[J]. 金刚石与磨料磨具工程, 2023, 43(4): 504-513. doi: 10.13394/j.cnki.jgszz.2022.0195
引用本文: 曹顺涛, 陈观慈, 李明春. 基于永磁体的磁流变抛光励磁装置设计与仿真[J]. 金刚石与磨料磨具工程, 2023, 43(4): 504-513. doi: 10.13394/j.cnki.jgszz.2022.0195
CAO Shuntao, CHEN Guanci, LI Mingchun. Design and simulation of magnetorheological polishing excitation device based on permanent magnet[J]. Diamond & Abrasives Engineering, 2023, 43(4): 504-513. doi: 10.13394/j.cnki.jgszz.2022.0195
Citation: CAO Shuntao, CHEN Guanci, LI Mingchun. Design and simulation of magnetorheological polishing excitation device based on permanent magnet[J]. Diamond & Abrasives Engineering, 2023, 43(4): 504-513. doi: 10.13394/j.cnki.jgszz.2022.0195

基于永磁体的磁流变抛光励磁装置设计与仿真

doi: 10.13394/j.cnki.jgszz.2022.0195
详细信息
    作者简介:

    陈观慈,男,1977年生,教授、博士生导师。主要研究方向:摩擦磨损与控制。E-mail: gcchen@kmust.edu.cn

  • 中图分类号: TG58

Design and simulation of magnetorheological polishing excitation device based on permanent magnet

  • 摘要:

    励磁装置作为磁流变抛光设备的核心部件,其能否产生稳定均匀的高梯度磁场,是决定磁流变抛光成功的关键因素。采用扇形永磁体设计磁流变抛光轮励磁装置,并运用ANSYS Electronics Desktop等软件从永磁体数量、充磁方式、排布方式、气隙宽度等方面对励磁装置进行仿真分析,得到不同工况下的磁感应线及磁感应强度分布。结果表明:当气隙宽度为4 mm时,采用单一永磁体轴向充磁产生的磁感应强度最大,可达358.4 mT,理论上可在抛光轮表面形成宽为26 mm、高为6.0 mm的抛光缎带。

     

  • 图  1  磁流变抛光轮

    Figure  1.  Magnetorheological polishing wheel

    图  2  励磁装置

    Figure  2.  Excitation device

    图  3  励磁装置坐标系

    Figure  3.  Excitation device coordinate system

    图  4  磁感应线分布示意图

    Figure  4.  Schematic diagram of magnetic induction line distribution

    图  5  扇形永磁体充磁方式

    Figure  5.  Magnetization modes of sector permanent magnet

    图  6  不同永磁体数量及排布方式的励磁装置模型

    Figure  6.  Excitation device models with different permanent magnet quantities and arrangements

    图  7  各仿真组的磁感应线分布

    Figure  7.  Distribution of magnetic induction lines of each simulation group

    图  8  各仿真组的磁感应强度分布云图

    Figure  8.  Cloud charts of magnetic induction intensity distribution of each simulation group

    图  9  各仿真组的磁感应强度分布曲线

    Figure  9.  Distribution curves of magnetic induction intensity of each simulation group

    图  10  气隙为2 mm和6 mm时的磁感应强度分布云图

    Figure  10.  Cloud charts of magnetic induction induction intensity distribution with air gap of 2 mm and 6 mm

    图  11  不同气隙大小时的磁感应强度分布曲线

    Figure  11.  Distribution corves of magnetic induction intensity at different air gap sizes

    表  1  钕铁硼N50的性能参数

    Table  1.   Performance parameters of NdFeB N50

    参数数值
    剩磁感应强度 Br / T1.41~1.45
    矫顽力 Hcb / (kA·m−1)828~907
    内禀矫顽力 Hcj / (kA·m−1)≥876
    最大磁能积 (BH)max / (kJ·m−3)382~398
    最高工作温度 Tw / ℃≤70
    下载: 导出CSV

    表  2  仿真方案

    Table  2.   Simulation schemes

    仿真编号磁体数量 n / 个充磁方式磁极排列分布
    11轴向充磁NS
    22轴向充磁SNSN
    32轴向充磁SNNS
    42径向辐射NS
    52径向平行NS
    下载: 导出CSV

    表  3  仿真结果汇总

    Table  3.   Simulation results summary

    仿真编号最大磁感应强度
    Bmax / mT
    能否形成抛光头
    1358.4形成宽为26 mm,峰值高度为
    6.0 mm的抛光头
    2276.8形成宽为18 mm,峰值高度为
    4.0 mm的抛光头
    3 11.0无抛光头形成
    4112.5无抛光头形成
    5102.7无抛光头形成
    下载: 导出CSV
  • [1] 肖强, 王嘉琪, 靳龙平. 磁流变抛光关键技术及工艺研究进展 [J]. 材料导报,2022,36(7):1-24.

    XIAO Qiang, WANG Jiaqi, JIN Longping. Research progress of key technology and process of magnetorheological polishing [J]. Materials Reports,2022,36(7):1-24.
    [2] 王嘉琪, 肖强. 磁流变抛光技术的研究进展 [J]. 表面技术,2019,48(10):317-328. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.039

    WANG Jiaqi, XIAO Qiang. Research progress of magnetorheological polishing technology [J]. Surface Technology,2019,48(10):317-328. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.039
    [3] 范娜, 陈传东, 张忠义. 硬脆材料超精密抛光技术研究进展 [J]. 稀土,2022,43(2):20-31.

    FAN Na, CHEN Chuandong, ZHANG Zhongyi. Research progress on ultra-precision polishing technology of hard and brittle substrate materials [J]. Chinese Rare Earths,2022,43(2):20-31.
    [4] 周琴琴, 彭可, 陈永福, 等. 磁流变抛光加工中磁场发生装置的设计与实验 [J]. 表面技术,2020,49(6):337-344.

    ZHOU Qinqin, PENG Ke, CHEN Yongfu. et al. Design and experiment of magnetic field generator in magnetorheological polishing process [J]. Surface Technology,2020,49(6):337-344.
    [5] 傅茂辉. 半导体晶片磁流变抛光的磁场发生装置设计 [D]. 北京: 北京交通大学, 2018.

    FU Maohui. Design of magnetic field generator for magnetorheological-finishing of semiconductor wafers [D]. Beijing: Beijing Jiaotong University, 2018.
    [6] 程灏波. 流体辅助微纳抛光原理与技术 [M]. 北京: 科学出版社, 2014.

    CHENG Haobo. The principle and technology of fluid assisted micro nano polishing [M]. Beijing: Science Press, 2014.
    [7] 李士煦. 磁流变抛光去除机理分析与性能优化 [D]. 青岛: 山东科技大学, 2019.

    LI Shixu. Removal mechanism analysis and performance optimization on magnetorheological finishing [D]. Qingdao: Shandong University of Science and Technology, 2019.
    [8] 彭小强. 确定性磁流变抛光的关键技术研究 [D]. 长沙: 国防科学技术大学, 2004.

    PENG Xiaoqiang. Study on the key techniques of deterministic magnetorheological finishing [D]. Changsha: National University of Defense Science and Technology, 2004.
    [9] 陆敬予. 倒置式磁流变抛光装置研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008.

    LU Jingyu. Research on inverted device for magnetorheological finishing [D]. Harbin: Harbin Institute of Technology, 2008.
    [10] 王永强, 尹韶辉, 魏长青, 等. 高效磁流变平整加工中的励磁装置优化及试验研究 [J]. 机械工程学报,2015,51(17):184-193. doi: 10.3901/JME.2015.17.184

    WANG Yongqiang, YIN Shaohui, WEI Changqing, et al. Optimization of magnetic excitation unit in high efficiency magnetorheological planarization and experimental study [J]. Journal of Mechanical Engineering,2015,51(17):184-193. doi: 10.3901/JME.2015.17.184
    [11] 郭隐彪, 郭江, 沈芸松. 磁流变抛光轮结构设计与磁场分析 [J]. 厦门大学学报(自然科学版),2008(4):528-531.

    GUO Yinbiao, GUO Jiang, SHEN Yunsong. Structural design and magnetic field analysis of magnetorheological polishing wheels [J]. Journal of Xiamen University (Natural Science Edition),2008(4):528-531.
    [12] 薛阳韩江. 基于永磁体的平面磁流变抛光技术的研究 [D]. 西安: 西安工业大学, 2021.

    XUE Yanghanjiang. Research on planar magnetorheological polishing technology based on permanent magnet [D]. Xi′an: Xi′an Technological University, 2021.
    [13] 倪剑锋, 陈月强. 稀土永磁铁磁场特性分析及有限元仿真分析 [J]. 河北能源职业技术学院学报,2020,20(1):82-85. doi: 10.3969/j.issn.1671-3974.2020.01.024

    NI Jianfeng, CHEN Yueqiang. Analysis of magnetic field characteristics of rare earth permanent magnets and finite element simulation analysis [J]. Journal of Hebei Energy Institute of Vocation and Technology,2020,20(1):82-85. doi: 10.3969/j.issn.1671-3974.2020.01.024
    [14] 陈希, 马忠鑫, 程新龙. 基于永磁体的抗磁性材料磁流变抛光装置研究 [J]. 机电工程,2019,36(3):311-315. doi: 10.3969/j.issn.1001-4551.2019.03.017

    CHEN Xi, MA Zhongxin, CHENG Xinlong. Magnetorheological polishing apparatus for diamagnetic material based on permanent magnets [J]. Journal of Mechanical & Electrical Engineering,2019,36(3):311-315. doi: 10.3969/j.issn.1001-4551.2019.03.017
    [15] 宋万里, 马晋涛, 胡志超, 等. 往复式磁流变抛光装置的设计与仿真研究 [J]. 机械设计与制造,2019(2):104-106. doi: 10.3969/j.issn.1001-3997.2019.02.026

    SONG Wanli, MA Jintao, HU Zhichao, et al. Design and simulation of reciprocating magnetorheological polishing device [J]. Machinery Design & Manufacture,2019(2):104-106. doi: 10.3969/j.issn.1001-3997.2019.02.026
    [16] 董国正. 小口径磁流变抛光装置设计与关键技术研究 [D]. 长沙: 国防科技大学, 2015.

    DONG Guozheng. Design of small-aperture magnetorheological finishing device and the key technology research [D]. Changsha: National University of Defense Technology, 2015.
    [17] 董国正, 胡皓, 李圣怡, 等. 基于永磁体的小口径磁流变抛光装置设计与优化 [J]. 纳米技术与精密工程,2015,13(4):251-257.

    DONG Guozheng, HU Hao, LI Shengyi, et al. Design and optimization of small bore magnetorheological finishing device for permanent magnet [J]. Nanotechnology and Precision Engineering,2015,13(4):251-257.
    [18] 邓高建. 方形永久磁石励磁的高效磁流变抛光工艺研究 [D]. 长沙: 湖南大学, 2014.

    DENG Gaojian. Research on high efficiency magnetorheological polishing-process with block-shape permanent magnet excitation [D]. Changsha: Hunan University, 2014.
    [19] 张峰, 邓伟杰. 碳化硅表面硅改性层的磁介质辅助抛光 [J]. 光学学报,2012,32(11):194-199.

    ZHANG Feng, DENG Weijie. Magnetic-medium assistant polishing of silicon modification layer on silicon carbide surface [J]. Acta Optica Sinica,2012,32(11):194-199.
    [20] 孙百万. 磁流变抛光试验台结构优化与工作性能分析 [D]. 沈阳: 东北大学, 2017.

    SUN Baiwan. Structural optimization and working performance analysis of magnetorheological polishing prototype [D]. Shenyang: Northeastern University, 2017.
    [21] 周虎, 杨建国, 李蓓智. 磁流变抛光装置中的磁路和磁屏蔽设计 [J]. 机械制造,2008(11):32-33. doi: 10.3969/j.issn.1000-4998.2008.11.011

    ZHOU Hu, YANG Jianguo, LI Beizhi. Design of magnetic circuit and magnetic shielding in magnetorheological polishing equipment [J]. Mechanical Manufacturing,2008(11):32-33. doi: 10.3969/j.issn.1000-4998.2008.11.011
    [22] 严密, 彭晓领. 磁学基础与磁性材料 [M]. 杭州: 浙江大学出版社, 2019.

    YAN Mi, PENG Xiaoling. Fundamentals of magnetism and magnetic materials [M]. Hangzhou: Zhejiang University Press, 2019.
    [23] 宾水明. 多磨头磁流变抛光装置设计及实验研究 [D]. 广州: 广东工业大学, 2019.

    BIN Shuiming. Device design and experimental research of magnetorheological finishing with multiple polishing heads [D]. Guangzhou: Guangdong University of Technology, 2019.
    [24] 路家斌, 宾水明, 阎秋生, 等. 磁场分布对多磨头磁流变抛光材料去除的影响 [J]. 润滑与密封,2020,45(4):20-26. doi: 10.3969/j.issn.0254-0150.2020.04.004

    LU Jiabin, BIN Shuiming, YAN Qiusheng, et al. Effect of magnetic field distribution on material removal in magnetorheological finishing with multiple polishing heads [J]. Lubrication Engineering,2020,45(4):20-26. doi: 10.3969/j.issn.0254-0150.2020.04.004
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  130
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2022-12-12
  • 录用日期:  2022-12-23
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回