Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP
-
摘要: 针对化学机械抛光中磨料易团聚、机械和化学作用不能充分发挥等问题,采用振动辅助的方法进行优化。通过分子动力学模拟,分析磨粒振动的频率、振幅及其压入深度、划切速度对工件表面微观原子迁移的演变规律,揭示振动对材料去除和表面改善的促进机制;并通过振动辅助化学机械抛光工艺试验和表面成分分析,验证振动辅助的抛光效果和去除机制。结果表明:适当增大磨粒的振动频率、振动振幅及其压入深度、划切速度,可有效提高工件表面的原子势能和温度;磨粒振动有利于提高工件表面原子的混乱度,促进碳化硅参与氧化反应,形成氧化层并以机械方式去除;抛光试验和成分分析也证实振动可以提高材料去除率约50.5%,改善表面质量约25.4%。Abstract: To address issues related to abrasion, agglomeration, and the challenges of mechanical and chemical release during chemical mechanical polishing (CMP), a vibration-assisted CMP method is employed. Molecular dynamics simulation analyze the dynamic evolution of frequency, amplitude, and indentation depth, along with the dicing speed of abrasive vibration on the workpiece's surface. It reveals the mechanism behind enhanced material removal and improved surface quality facilitated by vibration. The effectiveness and removal mechanism of vibration-assisted CMP are validated through process testing and surface composition analysis. The results show that atomic potential energy and temperature on the workpiece surface can be effectively improved by appropriately increasing vibration frequency, vibration amplitude, indentation depth, and abrasive particle cutting speed. Abrasive vibration contributes to increased atomic disorder on the workpiece surface, facilitating the participation of silicon carbide in oxidation reactions. This process results in the formation of an oxide layer, which is mechanically removed. Polishing tests and composition analyses also confirms that vibration can improve material removal rates by about 50.5% and improve the surface quality by about 25.4%.
-
Key words:
- silicon carbide /
- vibration /
- chemical mechanical polishing (CMP) /
- molecular dynamics
-
表 1 模拟参数设置
Table 1. Simulation parameter setting
参数 类型或取值 工件材料 单晶SiC 工件尺寸 185 Å × 96 Å × 60 Å 工件原子个数 103 680 磨粒半径 r / Å 20 磨粒原子个数 5 894 势能函数 Tersoff 边界条件 p p f 初始温度 T / K 298 振动频率 f / GHz 40,60,80,100 振幅 B / nm 0.4,0.8,1.2,1.6 压入深度 ap / nm 0.3,0.6,0.9,1.2 划切速度 v / (m·s−1) 50,75,100,125 -
[1] 王莹. SiC: 为何被称为是新一代功率半导体 [J]. 电子产品世界,2019,26(9):79-82.WANG Ying. SiC: Why is it called a new generation of power semiconductor [J]. Electronics World,2019,26(9):79-82. [2] 顾瑾栩, 张倩, 卢晓威. 北京第三代半导体产业发展思路的研究 [J]. 集成电路应用,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001GU Jinxu, ZHANG qian, LU Xiaowei. Research on the development ideas of the third generation semiconductor industry in Beijing [J]. Integrated Circuit Application,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001 [3] 赵婉雨. 聚焦产业关键技术, 把握第三代半导体发展机遇−第三代半导体材料产业技术分析报告 [J]. 高科技与产业化,2019(5):28-40.ZHAO Wanyu. Focus on the key technologies of the industry, grasp the development opportunities of the third generation semiconductor-the technical analysis report of the third generation semiconductor material industry [J]. High-tech and industrialization,2019(5):28-40. [4] 李娟, 陈秀芳, 马德营, 等. SiC单晶片的超精密加工 [J]. 功能材料,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021LI Juan, CHEN Xiufang, MA Deying, et al. Ultra-precision machining of SiC single wafer [J]. Functional Materials,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021 [5] 肖强, 李言, 李淑娟. SiC单晶片化学机械抛光超精密加工技术现状与趋势 [J]. 宇航材料工艺,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003XIAO Qiang, LI Yan, LI Shujuan. Present situation and trend of ultra-precision machining technology of chemical mechanical polishing of SiC single wafer [J]. Aerospace Materials Technology,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003 [6] 韩杰才, 张宇民, 赫晓东. 大尺寸轻型SiC光学反射镜研究进展 [J]. 宇航学报,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021HAN Jiecai, ZHANG Yumin, HE Xiaodong. Research progress of large-size light SiC optical mirror [J]. Journal of Aerospace,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021 [7] 马文礼, 沈忙作. 碳化硅轻型反射镜技术 [J]. 光学精密工程,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002MA Wenli, SHEN Mangzuo. Silicon carbide light mirror technology [J]. Optical Precision Engineering,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002 [8] 毛旭. SiC材料制备工艺研究进展 [J]. 云南大学学报,2002,24(1A):197-202.MAO Xu. Research progress in preparation technology of SiC materials [J]. Journal of Yunnan University,2002,24(1A):197-202. [9] 耿连福, 高顺喜, 李美岩. 难加工材料的切削加工性研究与实践 [J]. 煤矿机械,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045GENG Lianfu, GAO Shunxi, LI Meiyan. Research and practice on machinability of difficult-to-machine materials [J]. Coal Mine Machinery,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045 [10] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12:S41-S46. doi: 10.1016/j.cap.2012.02.016 [11] XU W H, LU X C, PAN G S, et al. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire [J]. Applied Surface Science,2010,256(12):3936-3940. doi: 10.1016/j.apsusc.2010.01.053 [12] TSAI M Y, YANG W Z. Combined ultrasonic vibration and chemical mechanical polishing of copper substrates [J]. International Journal of Machine Tools & Manufacture,2012,53(1):69-76. [13] LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials [J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):81-99. doi: 10.1007/s00170-017-0081-z [14] 石栋. 超声辅助单晶SiC晶片的研磨与化学机械抛光研究 [D]. 长春: 吉林大学, 2020.SHI Dong. Study on ultrasonic-assisted grinding and chemical mechanical polishing of single crystal SiC wafer [D]. Changchun: Jilin University, 2020. [15] YUAN Z , HE Y , SUN X , et al. UV-TiO2 photocatalysis- assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials and Manufacturing Processes, 2017: 10426914. [16] 于保军, 郭桌一, 卢发祥, 等. 紫外光催化振动复合抛光 [J]. 红外与激光工程,2022,51(11):361-367.YU Baojun, GUO Zhuoyi, LU Faxiang, et al. UV-catalyzed vibration compound polishing [J]. Infrared and Laser Engineering,2022,51(11):361-367. [17] 罗熙淳, 梁迎春, 董申. 单晶硅纳米加工机理的分子动力学研究 [J]. 航空精密制造技术,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001LUO Xichun, LIANG Yingchun, DONG Shen. Molecular dynamics study on nanoprocessing mechanism of single crystal silicon [J]. Aviation Precision Manufacturing Technology,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001 [18] MONTI S, LI C, CARRAVETTA V. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110) [J]. The Journal of Physical Chemistry C,2013,117(10):5221-5228. doi: 10.1021/jp312828d [19] 唐美玲. 光催化辅助拋光碳化硅材料去除机理研究 [D]. 沈阳: 沈阳工业大学, 2020.TANG Meiling. Study on the removal mechanism of photocatalytic assisted polishing of silicon carbide materials [D]. Shenyang: Shenyang University of Technology, 2020. [20] 李论. 振动辅助单颗磨粒划擦碳化硅晶体的数值仿真研究 [D]. 厦门: 华侨大学, 2019.LI Lun. Numerical simulation study on vibration-assisted single abrasive particle scratching silicon carbide crystal [D]. Xiamen: Huaqiao University, 2019. [21] 何艳. 光催化辅助抛光碳化硅晶片工艺及机理研究 [D]. 沈阳: 沈阳工业大学, 2019.HE Yan. Study on the process and mechanism of photocatalytic assisted polishing of silicon carbide wafer [D]. Shenyang: Shenyang University of Technology, 2019. [22] MURAKAMI N, KAWAKAMI S, TSUBOTA T, et al. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal [J]. Journal of Molecular Catalysis A:Chemical,2012,358:106-111. doi: 10.1016/j.molcata.2012.03.003 [23] ALALM M G, TAWFIK A, OOKAWARA S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry waste water: Operational conditions, kinetics, and costs [J]. Journal of Water Process Engineering. 2015, 8: 55-63. [24] PARK K H, KIM K T, HONG Y H, et al. Study on effect of ultrasonic vibration in machining of alumina ceramic [J]. Key Engineering Materials,2012,516:311-316. doi: 10.4028/www.scientific.net/KEM.516.311 [25] 赵明利, 赵波, 高国富. 超精密研抛及超声波研抛技术分析 [J]. 现代机械,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021ZHAO Mingli, ZHAO Bo, GAO Guofu. Analysis of ultra-precision polishing and ultrasonic polishing technology [J]. Modern Machinery,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021 [26] TERSOFF J. New empirical model for the structural properties of silicon [J]. Physical review letters,1986,56(6):632. doi: 10.1103/PhysRevLett.56.632 [27] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical review B,1989,39(8):5566. doi: 10.1103/PhysRevB.39.5566 [28] 苑泽伟. 利用化学和机械协同作用的CVD金刚石抛光机理与技术 [D]. 大连: 大连理工大学, 2012.YUAN Zewei. Mechanism and technology of CVD diamond polishing by chemical and mechanical synergy [D]. Dalian: Dalian University of Technology, 2012. -