CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微量润滑的多主元高熵合金铣削加工数值模拟

吴岩伟 刘寅 孙兴伟 杨赫然 董祉序 张维锋

吴岩伟, 刘寅, 孙兴伟, 杨赫然, 董祉序, 张维锋. 基于微量润滑的多主元高熵合金铣削加工数值模拟[J]. 金刚石与磨料磨具工程, 2025, 45(3): 332-341. doi: 10.13394/j.cnki.jgszz.2023.0265
引用本文: 吴岩伟, 刘寅, 孙兴伟, 杨赫然, 董祉序, 张维锋. 基于微量润滑的多主元高熵合金铣削加工数值模拟[J]. 金刚石与磨料磨具工程, 2025, 45(3): 332-341. doi: 10.13394/j.cnki.jgszz.2023.0265
WU Yanwei, LIU Yin, SUN Xingwei, YANG Heran, DONG Zhixu, ZHANG Weifeng. Numerical simulation of multi-principal elements high-entropy alloy milling based on minimal quantity lubrication[J]. Diamond & Abrasives Engineering, 2025, 45(3): 332-341. doi: 10.13394/j.cnki.jgszz.2023.0265
Citation: WU Yanwei, LIU Yin, SUN Xingwei, YANG Heran, DONG Zhixu, ZHANG Weifeng. Numerical simulation of multi-principal elements high-entropy alloy milling based on minimal quantity lubrication[J]. Diamond & Abrasives Engineering, 2025, 45(3): 332-341. doi: 10.13394/j.cnki.jgszz.2023.0265

基于微量润滑的多主元高熵合金铣削加工数值模拟

doi: 10.13394/j.cnki.jgszz.2023.0265
基金项目: 国家自然科学基金(52005346,52005347); 辽宁省应用基础研究计划项目(2022JH2/101300214); 辽宁省自然科学基金计划项目(2021-BS-149); 辽宁省教育厅科学研究经费项目(LQGD2020017)。
详细信息
    作者简介:

    刘寅,男,1986 年生,副教授、博士。主要研究方向:难加工材料精密加工技术,微尺度加工技术,绿色与清洁加工技术。E-mail:liuyin_neu@163.com

  • 中图分类号: TG58; TG71

Numerical simulation of multi-principal elements high-entropy alloy milling based on minimal quantity lubrication

  • 摘要: 为研究微量润滑对多主元高熵合金铣削力的影响,建立高熵合金与四刃立铣刀的热力耦合单刃铣削模型,通过分析材料去除机理揭示微量润滑降低铣削力的作用机制,并开展单因素实验研究不同铣削参数对铣削力的影响规律。结果表明:在铣削深度为0.15~0.20 mm时,微量润滑铣削相较于干式铣削几乎不降低铣削力;在铣削深度>0.20 mm时,随着铣削深度增加,微量润滑降低铣削力的效果增强;在铣削深度为0.30 mm时,可降低约30%的铣削力。同时,铣削力随着每齿进给量和铣削深度的增加而增大,且随铣削深度逐渐增加,铣削力对每齿进给量增大的敏感程度逐渐加剧。

     

  • 图  1  铣刀有限元模型

    Figure  1.  Finite element model for milling cutter

    图  2  铣削模型示意图

    Figure  2.  Schematic diagram of milling model

    图  3  干式和MQL铣削时的米塞斯应力云图

    Figure  3.  Mises stress nephograms during dry and MQL milling

    图  4  干式和MQL铣削时的温度云图

    Figure  4.  Temperature nephograms during dry and MQL milling

    图  5  干式铣削下XYZ 3个坐标轴方向的铣削力分布

    Figure  5.  Distribution of dry milling forces in X,Y,Z three axis directions

    图  6  不同铣削深度下的X轴方向平均铣削力对比

    Figure  6.  Comparison of average milling forces in X-axis direction at different milling depths

    图  7  进给速度对X轴方向平均铣削力的影响

    Figure  7.  Influences of feed rates on average milling forces in X-axis direction

    图  8  主轴转速对X轴方向平均铣削力的影响

    Figure  8.  Influences of spindle speeds on average milling forces in X-axis direction

    图  9  实验设备

    Figure  9.  Test equipment

    图  10  实验试件

    Figure  10.  Test specimen

    图  11  实验试件能谱分析

    Figure  11.  Energy spectrum analysis of test specimen

    图  12  进给速度对X轴方向平均铣削力的影响

    Figure  12.  Influences of feed rates on average milling forces in X-axis direction

    图  13  不同铣削深度下每齿进给量对X轴方向平均铣削力的影响

    Figure  13.  Effects of feed per tooth on average milling forces in X-axis direction at different milling depths

    表  1  铣刀模型主要参数

    Table  1.   Main parameters of milling cutter model

    刀具参数名称 参数值
    $ {\gamma }_{0} $ / (°) 45
    $ {\alpha }_{0} $ / (°) 20
    $ {\gamma }_{1} $ / (°) 0
    $ {\alpha }_{1} $ / (°) 20
    $ \beta $ / (°) 45
    $ {Z}_{{\mathrm{n}}} $ 4
    $ {L}_{1} $ / mm 1
    $ {D}_{{\mathrm{c}}} $ / mm 2
    $ {b}_{{\mathrm{a}}1} $ / mm 0.08
    下载: 导出CSV

    表  2  CoCrFeNiMn的J-C本构模型参数

    Table  2.   J-C constitutive model parameters of CoCrFeNiMn

    本构模型参数 取值
    A / MPa 620
    B / MPa 1820
    C 0.38
    n 0.78
    m 0.71
    下载: 导出CSV

    表  3  不同润滑方式下的摩擦系数

    Table  3.   Friction coefficients under different lubrication modes

    润滑方式摩擦系数 μ
    MQL铣削0.4
    干式铣削0.6
    下载: 导出CSV

    表  4  热传导模型参数

    Table  4.   Parameters of heat conduction model

    类型 比热容
    $ c $ / (J·kg−1·K−1)
    热导率
    $ \lambda $ / (W·m−1·K−1)
    非弹性热
    份额 $ {W}_{{\mathrm{h}}} $
    膜层散热系数
    h / (W·m−2·K−1)
    工件 565 10 0.9 300
    铣刀 176 79 0.9 80
    下载: 导出CSV
  • [1] 梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展 [J]. 材料工程,2009, 37(12):75-79. doi: 10.3969/j.issn.1001-4381.2009.12.018

    LIANG Xiubing, WEI Min, CHENG Jiangbo, et al. Research progress in advanced materials of high-entropy alloys [J]. Journal of Materials Engineering,2009, 37(12):75-79. doi: 10.3969/j.issn.1001-4381.2009.12.018
    [2] 陈永星, 朱胜, 王晓明, 等. 高熵合金制备及研究进展 [J]. 材料工程,2017,45(11):129-138. doi: 10.11868/j.issn.1001-4381.2015.001124

    CHEN Yongxing, ZHU Sheng, WANG Xiaoming, et al. Progress in preparation and research of high entropy alloys [J]. Journal of Materials Engineering,2017,45(11):129-138. doi: 10.11868/j.issn.1001-4381.2015.001124
    [3] DOAN D Q, FANG T H, CHEN T H. Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting [J]. Intermetallics,2021,131(11):107079. doi: 10.1016/j.intermet.2020.107079
    [4] CONSTANTIN G, BALAN E, VOICULESCU I, et al. Cutting behavior of Al0.6CoCrFeNi high entropy alloy [J]. Materials,2020,13(18):4181. doi: 10.3390/ma13184181
    [5] ZHANG L, HASHIMOTO T, YAN J W. Machinability exploration for high-entropy alloy FeCrCoMnNi by ultrasonic vibration-assisted diamond turning [J]. CIRP Annals,2021,70(5):37-40. doi: 10.1016/j.cirp.2021.04.090
    [6] 袁松梅, 韩文亮, 朱光远, 等. 绿色切削微量润滑增效技术研究进展 [J]. 机械工程学报,2019,55(5):175-185. doi: 10.3901/JME.2019.05.175

    YUAN Songmei, HAN Wenliang, ZHU Guangyuan, et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting [J]. Journal of Mechanical Engineering,2019,55(5):175-185. doi: 10.3901/JME.2019.05.175
    [7] 袁松梅, 朱光远, 王莉. 绿色切削微量润滑技术润滑剂特性研究进展 [J]. 机械工程学报,2017,53(17):131-140. doi: 10.3901/JME.2017.17.131

    YUAN Songmei, ZHU Guangyuan, WANG Li. Recent progress on lubricant characteristics of minimum quantity lubrication (MQL) technology in green cutting [J]. Journal of Mechanical Engineering,2017,53(17):131-140. doi: 10.3901/JME.2017.17.131
    [8] WANG Y G, LI C H, ZHANG Y B, et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils [J]. Journal of Cleaner Production,2016,127:487-499. doi: 10.1016/j.jclepro.2016.03.121
    [9] SU Y, GONG L, LI B, et al. Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning [J]. The International Journal of Advanced Manufacturing Technology,2016,83(9):2083-2089. doi: 10.1007/s00170-015-7730-x
    [10] WANG Y G, LI C H, ZHANG Y B, et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids [J]. Tribology International,2016,99:198-210. doi: 10.1016/j.triboint.2016.03.023
    [11] 周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报,2019,33(4):3-16. doi: 10.11858/gywlxb.20190721

    ZHOU Lin, WANG Zihao, WEN Heming. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics,2019,33(4):3-16. doi: 10.11858/gywlxb.20190721
    [12] 许海涛. 动态预压缩对CoCrFeNiMn高熵合金微尺度压入硬度的影响 [D]. 太原: 太原理工大学, 2021.

    XU Haitao. Effect of dynamic pre-compression micro-scale indentation hardness of CoCrFeNiMn high-entropy alloy [D]. Taiyuan: Taiyuan University of Technology, 2021.
    [13] 尹晓珊, 钟建琳, 彭宝营, 等. Ti2AlNb基合金切削力有限元仿真 [J]. 工具技术,2023,57(4):65-69. doi: 10.3969/j.issn.1000-7008.2023.04.012

    YIN Xiaoshan, ZHONG Jianlin, PENG Baoying, et al. Finite element simulation of cutting force of Ti2AlNb-based alloy [J]. Tool Engineering,2023,57(4):65-69. doi: 10.3969/j.issn.1000-7008.2023.04.012
    [14] ZHANG Y, HUANG X. Simulation and research of aerospace material milling based on ABAQUS [J]. Journal of Physics: Conference Series, 2020, 1653(1): 012070. doi: 10.1088/1742-6596/1653/1/012070
    [15] 梁正一, 杨赫然, 刘寅, 等. 基于MQL的锆基块体金属玻璃钻削仿真研究 [J]. 工具技术,2023,57(7):90-96. doi: 10.3969/j.issn.1000-7008.2023.07.016

    LIANG Zhengyi, YANG Heran, LIU Yin, et al. Simulation research on drilling of Zr-based bulk metal glass based on MQL [J]. Tool Engineering,2023,57(7):90-96. doi: 10.3969/j.issn.1000-7008.2023.07.016
    [16] 奚欣欣, 陈涛, 丁文锋. TiAl合金低压涡轮叶片榫头磨削温度场研究 [J]. 金刚石与磨料磨具工程,2020,40(5):17-22. doi: 10.13394/j.cnki.jgszz.2020.5.0003

    XI Xinxin, CHEN Tao, DING Wenfeng. Research on temperature field during grinding of low-pressure turbine blade tenon of TiAl alloys [J]. Diamond & Abrasives Engineering,2020,40(5):17-22. doi: 10.13394/j.cnki.jgszz.2020.5.0003
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-07-13
  • 录用日期:  2024-08-08
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回