Design and analysis of spiral plating solution flow and rotating magnetic field device for electroplated diamond wire saw
-
摘要: 电镀金刚石线锯表面易存在金刚石磨粒团聚和分布密度波动大等缺陷,在探讨其成因及后果的基础上,设计螺旋镀液流和旋转磁场组合装置,制备电镀金刚石线锯。结果表明:螺旋镀液流和旋转磁场组合装置可显著减少金刚石磨粒的团聚现象,同时控制金刚石磨粒的分布密度波动范围在11颗/mm以内,使金刚石磨粒沿基线分布得更均匀。结合组合装置的基本参数,其制取电镀金刚石线锯的最佳工艺参数是螺旋叶片数为5片,螺旋角为60°,混合液流量为4.8 L/min,固持架数量为16件,永磁体交错布置角度为60°,磁场旋转速度为60 r/min,永磁体及其磁场特性代号为N38M,且在最佳参数下生产的电镀金刚石线锯适合用于硅晶片等高硬脆材料的切割。Abstract:
Objectives In response to the defects of diamond abrasive particle aggregation and large density fluctuations on the surface of traditional electroplated diamond wire saws, an innovative design of a combination device of spiral bath flow and rotating magnetic field is proposed to break through the technical bottlenecks of existing electroplating processes in terms of coating uniformity, orderly arrangement of diamonds and tool life. The research focuses on solving three core problems: (1) the structural design of the spiral bath flow electroplating device and the optimization of flow rate and spiral speed of the spiral bath flow; (2) the structural design of the rotating magnetic field device and the optimization of rotation speed and magnetic field strength; (3) the optimal process parameters for electroplating diamond wire saws in the new composite field electroplating device, and the production of wire saws for silicon wafer cutting experiments. Methods The electroplating mixture spirals in the same direction around the baseline, which can improve the consistency of diamond particle concentration around the baseline circumference and enhance the uniformity of the mixed solution stirring. Based on this, the spiral bath flow electroplating device is designed. Then the rotating magnetic field device is designed by experiment, and a suitable alternating magnetic field is applied to the plating solution, which is beneficial to improve the deposition rate and the consolidation strength of the diamond particles with the baseline. The spiral bath flow electroplating device and the rotating magnetic field device together form the electroplating combination device. Through the data accumulation of continuous experiments and production practice, the basic parameters such as permanent magnet material, magnet size, inner wall size of the glass tube, baseline travel speed, and bottom diameter of the spiral blade in the combined device are determined. The optimal technological parameters of the electroplated diamond wire saw for the combined device are obtained by the single-factor experiment method, and the wire saw is made. The surface morphologies of electroplated diamond wire saws prepared under different processes are observed by scanning electron microscope, and the monocrystalline silicon is sliced by an ultra-high speed multi-wire cutting machine. The surface roughness of the silicon wafer in the feed direction is measured by a surface roughness tester. Results The mixed liquid of the spiral bath flow electroplating device enters the glass tube from the spiral blades of the spiral guide inner core, rotates spirally upward around the baseline in the glass tube under the action of the spiral blades, and flows out from the outlet of the mixed solution in the glass tube. Four symmetrical grooves are set on the inner wall of the glass tube for placing nickel anodes to avoid hindering the flow of the spiral liquid. The baseline enters from the hollow center of the spiral guide core and passes upward through the electroplating device, and the baseline is not in direct contact with the spiral guide inner core. According to the inner diameter value of the glass tube d = 56 mm, the minimum flow rate of the mixed liquid calculated is Q = 4.43 L/min. The inner core material of the spiral guide is TA2 titanium alloy, the bottom diameter of the spiral blade is 12 mm, the helix angle is 60°, the thickness is 2 mm, and the outer diameter and the height are consistent with d. The rotating magnetic field device is composed of NdFeB alloy cylinders and a fixed holder, etc., which rotates precisely around the center line of the spiral bath flow electroplating device at the appropriate rotation speed. The basic parameters of the combined device are: the magnet size is φ20 mm × 30 mm, the inner wall diameter × length of the glass tube is φ56 mm × 850 mm, the baseline travel speed is less than or equal to 20 m/min, the bottom diameter of the spiral blade is 5 mm, the blade thickness is 2 mm, and the concentration of diamond abrasive is 1.55 g/L. The optimal process parameters for electroplating diamond wire saws in the combination device, determined by single-factor experiment are: the spiral blade number is 5, the spiral angle is 60°, the mixed liquid flow rate is 4.80 L/min, the fixed holder number is 12, the staggered arrangement angle of the permanent magnets is 60°, the magnetic field rotation speed is 60 r/min, and the magnetic field strength of the N38M permanent magnet is 0.549 T. The electroplating line produced under the optimal process parameters shows that the diamond particles are evenly distributed on the baseline surface without any stacking or agglomeration phenomenon, and the particle distribution density is basically uniform. The number of diamond particles is 15 to 25 particles/mm, and the fluctuation range of diamond particle numbers is controlled within 11 particles/mm. Using this wire saw to slice a single crystal silicon rod with φ50.6 mm, the surface roughness Ra value of the silicon wafer in the feed direction is 0.583 μm, which is 35.9% and 28.2% lower than the literature values, respectively. Conclusions The combined device of spiral bath flow and rotating magnetic field is designed to make the diamond abrasive particles in the mixed liquid evenly distributed in the bath flow mode, and orderly arranged according to the magnetic field line and rotated around the baseline. This can basically eliminate the diamond agglomeration defect on the surface of the wire saw and improve the uniformity of the distribution density of diamond particles. The average surface roughness of the silicon wafer in the feed direction is lower, so the workload of the subsequent grinding process can be reduced. -
表 1 螺旋镀液流电镀装置的电镀混合液组成[14]
Table 1. Composition of electroplating mixture in spiral electroplating flow electroplating device[14]
参数 取值 硫酸镍浓度 ρ1 / (g·L−1) 250 硼酸浓度 ρ2 / (g·L−1) 35 氯化镍浓度 ρ3 / (g·L−1) 30 复配光亮剂浓度 ρ4 / (g·L−1) 0.5 十二烷基硫酸钠浓度 ρ5 / (g·L−1) 0.1 温度 θ / ℃ 45 pH值 4.3 M30 / 40金刚石微粉浓度 ρ6 / (g·L−1) 1.55 表 2 组合装置的基本参数
Table 2. Basic parameters of combined device
旋转磁场装置 螺旋镀液流电镀装置 永磁体材料 磁体尺寸 玻璃管内壁
直径 × 长基线行进速度
v1 / (m·min−1)螺旋叶片底径
d1 / mm金刚石磨粒浓度
ρ6 / (g·L−1)叶片厚度
h / mm钕铁硼合金[22] ϕ20 mm × 30 mm ϕ56 mm × 850 mm ≤ 20 5 1.55 2 表 3 线锯技术指标
Table 3. Wire saw technical specifications
表 4 不同螺旋叶片数时的结果
Table 4. Results at different spiral blade numbers
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放
置角 β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围n3 / 颗团聚现象 3 60 4.8 16 60 60 N38M 14~32 19 中度 4 16~30 14 中度 5 15~25 11 无 6 15~25 11 无 表 5 不同螺旋角时的结果
Table 5. Results at different helix angles
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置
角 β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 40 4.8 16 60 60 N38M 13~30 18 中度 50 15~27 12 轻度 60 15~25 11 无 70 15~26 12 轻度 80 14~27 14 轻度 表 6 不同混合液流量时的结果
Table 6. Results at different mixture liquid flows
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置
角 β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.5 16 60 60 N38M 14~26 13 中度 4.6 15~26 12 轻度 4.8 15~25 11 无 5.0 14~26 13 轻度 5.2 14~28 14 中度 表 7 不同固持架数量时的结果
Table 7. Results at different numbers of retaining frames
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置角
β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.8 12 60 60 N38M 14~27 14 中度 13 14~26 13 轻度 14 15~26 12 轻度 15 15~25 12 轻度 16 15~25 11 无 表 8 不同永磁体交错放置角时的结果
Table 8. Results of different staggered angles of permanent magnets
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置角
β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.8 16 20 60 N38M 15~27 13 中度 40 13~25 13 轻度 60 15~25 11 无 80 15~25 11 无 90 15~25 10 无 表 9 不同磁场旋转速度时的结果
Table 9. Results at different magnetic field rotation speeds
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置角
β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.8 16 60 40 N38M 15~25 11 轻度 45 15~25 11 轻度 50 15~25 11 轻度 55 15~25 11 轻度 60 15~25 11 无 65 15~23 9 无 70 15~21 8 无 表 10 不同磁场强度时的结果
Table 10. Results of different magnetic field strength
参数 线锯结果 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / (L·min−1)固持架数量
n2 / 件永磁体交错放置角
β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.8 16 60 60 N40M 15~23 9 无 N38M 15~25 11 无 N35M 15~25 11 轻度 N33H 15~26 12 轻度 N30VH 15~26 12 中度 表 11 组合装置的最佳运行参数
Table 11. Advised operating parameters of combined device
参数 线锯产品 螺旋叶片数
n1 / 片螺旋角
α / (°)混合液流量
qv / L·min−1固持架数量
n2 / 件永磁体交错放置角
β / (°)磁场旋转速度
n / (r·min−1)永磁体代号 金刚石磨粒分布密度
ρ7 / (颗·mm−1)金刚石磨粒波动
范围 n3 / 颗团聚现象 5 60 4.8 16 60 60 N38M 15~25 11 无 表 12 线锯表面形貌及开刃端口断裂形貌数据比较
Table 12. Comparison of surface appearance and port morphology of cutting edge fracture of wire saw
线锯 指标或取值 金刚石磨粒
分布密度
ρ7 / (颗·mm−1)金刚石磨粒
波动范围
n3 / (颗·mm−1)金刚石磨粒
团聚现象破断试验 新装置制取 15~25 11 无 镀层与基线
无分离国内某公司 14~36 23 重度 -
[1] 代晓南, 白玲, 邢勇, 等. 基线磁化对金刚石线锯制备工艺的影响 [J]. 超硬材料工程,2020,32(3):13-16. doi: 10.3969/j.issn.1673-1433.2020.03.004DAI Xiaonan, BAI Ling, XING Yong, et al. Effect of baseline magnetization on the preparation of diamond wire saw [J]. Superhard Material Engineering,2020,32(3):13-16. doi: 10.3969/j.issn.1673-1433.2020.03.004 [2] 黄炜, 徐金宝, 吕忠光, 等. 单晶硅棒等高硬脆性材料锯切线及其制备技术的现状与发展趋势 [J]. 世界有色金属,2023(6):137-141. doi: 10.3969/j.issn.1002-5065.2023.18.045HUANG Wei, XU Jinbao, LV Zhongguang, et al. Current situation and development trend of sawing wire and its preparation technology for high hard and brittle materials such as single crystal silicon rod [J]. World Nonferrous Metals,2023(6):137-141. doi: 10.3969/j.issn.1002-5065.2023.18.045 [3] 张凤林, 袁慧, 周玉梅, 等. 硅片精密切割多线锯研究进展 [J]. 金刚石与磨料磨具工程,2006(6):14-18. doi: 10.3969/j.issn.1006-852X.2006.06.005ZHANG Fenglin, YUAN Hui, ZHOU Yumei, et al. Progress of multi-wire for precision slicing of silicon wafer [J]. Diamond & Abrasives Engineering,2006(6):14-18. doi: 10.3969/j.issn.1006-852X.2006.06.005 [4] 张晨政, 葛培琪, 陈自彬, 等. 电镀金刚石线锯使用性能的试验研究 [J]. 金刚石与磨料磨具工程,2021,41(6):74-79. doi: 10.13394/j.cnki.jgszz.2021.6.0013ZHANG Chenzheng, GE Peiqi, CHEN Zibin, et al. Experimental analysis on application performance of electroplated diamond wire saw [J]. Diamond & Abrasives Engineering,2021,41(6):74-79. doi: 10.13394/j.cnki.jgszz.2021.6.0013 [5] WALTERS J, SUNDER K, ANSPACH O, et al. Challenges associated with diamond wire sawing when generating reduced thickness mono-crystalline silicon wafers: 2016 IEEE 43rd photovoltaic specialists conference ( PVSC) [C]. Portland, USA: IEEE, 2016. [6] German Mechanical Engineering Industry Association. International technology roadmap for photovoltaic [R] . Frankfurt: VDMA, 2019. [7] 全国半导体设备和材料标准化技术委员会. 光伏用树脂金刚石切割线: GB / T 34983—2017[S]. 北京: 中国标准出版社, 2017.National Technical Committee for Standardization of Semiconductor Equipment and Materials. Resin bond diamond wire for photovoltaic applications: GB / T 34983—2017 [S]. Beijing: Standards Press of China, 2017. [8] 远瞻财经. 产能释放业绩反转, 岱勒新材: 细线化 + 薄片化支撑金刚线火热需求[DB/OL]. (2023-10-28)[2023-11-25]. Https://baijiahao.baidu.com/s?id=1780988180006727831&wfr=spider&for=pc.Yuan Zhan Finance and Economics. Capacity release and performance reversal, Dialine New Material: Production capacity release drives performance reversal, with thin and thin lines supporting the hot demand for diamond wire production. [DB/OL]. (2023-10-28) [2023-11-25]. Https://baijiahao.baidu.com/s?id=1780988180006727831&wfr=spider&for=pc. [9] 徐金宝, 吕忠光. 一种丝线视觉检测装置: CN202123054296. X [P]. 2022-05-31.XU Jinbao, LV Zhongguang. A test equipment for wire based on visual method : CN202123054296 . X [P]. 2022-05-31. [10] 徐金宝, 吕忠光. 一种粉末自动加料装置: CN202123054283.2 [P]. 2022-05-31.XU Jinbao, LV Zhongguang. An automatic feeding equipment for powder material: CN202123054283.2 [P]. 2022-05-31. [11] 赵炎五, 郭伟信, 彭永强, 等. 一种金刚线钻石粉颗粒分布均匀性评估方法: CN202211204996.9 [P]. 2022-12-30.ZHAO Yanwu, GUO Weixin, PENG Yongqiang, et al. An evluation method of particle distribution uniformity for diamond wire: CN202211204996.9 [P]. 2022-12-30. [12] 钱康乐, 徐金宝, 吕忠光, 等. 一种金属细丝表面增材金刚石磨粒的装置: CN2022322617470X [P]. 2023-09-26.QIAN Kangle, XU Jinbao, LV Zhongguang, et al. An additive manufactured diamond of surface for metal wire: CN2022322617470X [P]. 2023-09-26. [13] 思瀚产业研究院. 金刚石线行业技术水平及技术特点[EB/OL]. (2022-10-14)[2023-11-25]. https://baijiahao.baidu.com/s?id=1746629777867388987&wfr=spider&for=pc.Sihan Industry Research Institute. Technical level and characteristics of diamond wire industry[EB/OL]. (2022-10-14)[2023-11-25]. https://baijiahao.baidu.com/s?id=1746629777867388987&wfr=spider&for=pc. [14] 张景涛. 电镀金刚石线锯制造工艺及其性能的研究 [D]. 青岛: 青岛科技大学, 2013.ZHANG Jingtao. Research on manufacturing process and its performance of the electroplated diamond wire saw [D]. Qingdao: Qingdao University of Science & Technology, 2013. [15] TSUBOT T, TANII S, ISHIDA T, et al. Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent [J]. Diamond and Related Materials,2005,14(3):605-612. doi: 10.1016/j.diamond.2005.01.013 [16] GANESH V, VIJAGARAFHAVAN D, LSKSHMINARAYANAN V. Fine grain growth of nickel electrode-posit: Effect of applied magnetic field during deposition [J]. Applied Surface Science,2005,240(1):286-295. doi: 10.1016/j.apsusc.2004.06.139 [17] 付宇明, 王三星, 郑丽娟. 交变磁处理对金刚石锯片性能的影响 [J]. 金刚石与磨料磨具工程,2013(4):49-51. doi: 10.3969/j.issn.1006-852X.2008.06.008FU Yuming, WANG Sanxing, ZHENG Lijuan. Effect of alternating magnetic treatment on the properties of diamond saw blades [J]. Diamond & Abrasives Engineering,2013(4):49-51. doi: 10.3969/j.issn.1006-852X.2008.06.008 [18] MILLER P C. Look at magnetic treatment of tools and wear surface [J]. Tooling & Production,1990,55(12):100-103. [19] 王琳, 赵汉雨, 李云东, 等. 制备电镀金刚石工具时外加交变磁场的作用 [J]. 电镀与环保,2012,32(3):11-13. doi: 10.3969/j.issn.1000-4742.2012.03.004WANG Lin, ZHAO Hanyu, LI Yundong, et al. Effects of applied magnetic field in preparation of electroplated diamond tools [J]. Electroplating & Pollution Control,2012,32(3):11-13. doi: 10.3969/j.issn.1000-4742.2012.03.004 [20] 忘艳辉, 李晓虎, 常锐, 等. 金刚石微粉表面镀覆对线锯的关键作用分析 [J]. 金刚石与磨料磨具工程,2013,3(33):26-30. doi: 10.13394/j.cnki.jgszz.2013.03.015WANG Yanhui, LI Xiaohu, CHANG Rui, et al. Effect of coated micro powder on diamond wire saw manufacturing technology [J]. Diamond & Abrasives Engineering,2013,3(33):26-30. doi: 10.13394/j.cnki.jgszz.2013.03.015 [21] 朱澍勋, 周星, 梁承渊, 等. 一种测评镀覆金刚石磁化率的装置: CN202122947683. X [P]. 2022-05-03.ZHU Shuxun, ZHOU Xing, LIANG Chengyuan, et al. An equipment for magnetic susceptibility of coated diamond: CN202122947683. X [P]. 2022-05-03. [22] 全国稀土标准化技术委员会. 烧结钕铁硼永磁材料: GB/T 13560—2017[S]. 北京: 中国标准出版社, 2017.National Technical Committee for Standardization of Rare Earth. Sintered neodymium iron boron permanent magnets: GB/T 13560—2017[S]. Beijing: Standards Press of China, 2017. [23] 全国磨粒磨具标准化技术委员会. 超硬磨料 人造金刚石和立方氮化硼微粉: JB/T 7990—2012[S]. 北京: 机械工业出版社, 2012.National Technical Committee for Standardization of Abrasive Tools. Superabrasive: Synthetic diamond and cubic boron nitride micropowder: JB/T 7990—2012 [S]. Beijing: China Machine Press, 2012. [24] 全国磨粒磨具标准化技术委员会. 超硬磨料制品 电镀金刚石线: JB/T 12543—2015[S]. 北京: 机械工业出版社, 2016.National Technical Committee for Standardization of Abrasive Tools. Superabrasive products: Electroplated diamond wire: JB/T 12543—2015 [S]. Beijing: China Machine Press, 2016. [25] 李相鹏, 舒健, 李芳霞, 等. 一种基于永磁体的旋转磁场产生装置: CN109036759B [P]. 2020-06-19.LI Xiangpeng, SHU Jian, LI Fangxia, et al. An equipment for rotating magnetic field basing on permanent magnets: CN109036759B [P]. 2020-06-19. [26] 李宏达, 秦军存, 邢旭, 等. 线速度对金刚石线锯及硅片表面质量的影响 [J]. 金刚石与磨料磨具工程,2017,37(5):41-44,49. doi: 10.13394/j.cnki.jgszz.2017.5.0007LI Hongda, QIN Juncun, XING Xu, et al. Influence of wire speed on diamond wire saw and surface quality of silicon wafer [J]. Diamond & Abrasives Engineering,2017,37(5):41-44,49. doi: 10.13394/j.cnki.jgszz.2017.5.0007 -