CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波等离子体化学气相沉积制备金刚石厚膜的研究及应用进展

刘富成 马莞杰 黄江涛 张宗雁 韩培刚 何斌

刘富成, 马莞杰, 黄江涛, 张宗雁, 韩培刚, 何斌. 微波等离子体化学气相沉积制备金刚石厚膜的研究及应用进展[J]. 金刚石与磨料磨具工程, 2025, 45(3): 285-299. doi: 10.13394/j.cnki.jgszz.2023.0270
引用本文: 刘富成, 马莞杰, 黄江涛, 张宗雁, 韩培刚, 何斌. 微波等离子体化学气相沉积制备金刚石厚膜的研究及应用进展[J]. 金刚石与磨料磨具工程, 2025, 45(3): 285-299. doi: 10.13394/j.cnki.jgszz.2023.0270
LIU Fucheng, MA Guanjie, HUANG Jiangtao, ZHANG Zongyan, HAN Peigang, HE Bin. Advances in studies and applications of thick diamond films prepared by microwave plasma chemical vapor deposition[J]. Diamond & Abrasives Engineering, 2025, 45(3): 285-299. doi: 10.13394/j.cnki.jgszz.2023.0270
Citation: LIU Fucheng, MA Guanjie, HUANG Jiangtao, ZHANG Zongyan, HAN Peigang, HE Bin. Advances in studies and applications of thick diamond films prepared by microwave plasma chemical vapor deposition[J]. Diamond & Abrasives Engineering, 2025, 45(3): 285-299. doi: 10.13394/j.cnki.jgszz.2023.0270

微波等离子体化学气相沉积制备金刚石厚膜的研究及应用进展

doi: 10.13394/j.cnki.jgszz.2023.0270
基金项目: 深圳市高等院校稳定支持计划面上项目(20220716001753001);深圳市超金刚石与功能晶体应用技术重点实验室(ZDSYS20230626091303007);深圳技术大学校企合作研发项目(2021010802002);广东省重点建设学科科研能力提升项目(2021ZDJS110)。
详细信息
    通讯作者:

    通信作者:韩培刚,男,1964年生,教授。主要研究方向:材料表面技术与光伏技术。E-mail:hanpeigang@sztu.edu.cn

    何斌,男,1977年生,教授。主要研究方向:金刚石及相关材料。E-mail:hebin@sztu.edu.cn

  • 中图分类号: TQ164

Advances in studies and applications of thick diamond films prepared by microwave plasma chemical vapor deposition

  • 摘要: 近年来,随着化学气相沉积(CVD)制备金刚石技术的发展,关于金刚石的研究与应用受到越来越多的关注。目前,主要的CVD技术有微波等离子体化学气相沉积(MPCVD)、热丝化学气相沉积、直流电弧等离子体喷射化学气相沉积和热阴极等离子体化学气相沉积等。MPCVD技术因其生长的金刚石品质高,被认为是制备大面积、高质量金刚石厚膜的最佳方法。首先介绍MPCVD的基本原理和设备,比较几种主要MPCVD技术的优缺点,并对国内外的研究进展进行总结,包括金刚石生长工艺的研究,特别是国内外单晶/多晶金刚石厚膜的制备研究,然后总结近年来金刚石厚膜在电子、光学、热沉等高新技术领域的应用,最后对金刚石厚膜的发展前景进行展望。

     

  • 图  1  MPCVD金刚石膜沉积机理模型

    Figure  1.  MPCVD diamond film deposition mechanism model

    图  2  国外MPCVD制备的金刚石膜

    Figure  2.  Diamond films prepared by MPCVD abroad

    图  3  国内MPCVD制备的金刚石膜

    Figure  3.  Diamond films prepared by MPCVD in China

    图  4  英国E6公司使用MPCVD制备的金刚石窗口[68]

    Figure  4.  Diamond windows prepared using MPCVD at E6,UK[68]

    图  5  目前最大人工培育钻石[71]

    Figure  5.  Largest cultivated diamond at present[71]

    图  6  E6公司生产的金属化Diafilm TM100 散热片[72]

    Figure  6.  E6 produces a metallized Diafilm TM100 heat sink [72]

    图  7  单晶金刚石用于高能粒子探测装置[72]

    Figure  7.  Single-crystal diamond for high-energy particle detection devices[72]

    图  8  金刚石二极管[87]

    Figure  8.  Diamond diode[87]

    图  9  (a)基于多晶金刚石光电探测器线性阵列的成像系统示意图(b)~(e)显示从具有不同光学图案的光电探测器线性阵列获得的相应成像结果[95]

    Figure  9.  (a) Schematic of imaging system based on polycrystalline diamond photodetector linear array (b)~(e) Bottom figures show corresponding imaging results acquired from photodetector linear array with different optical patterns[95]

    表  1  早期2.45 GHz MPCVD设备的发展[3]

    Table  1.   Early development of 2.45 GHz MPCVD device[3]

    腔室类型开始时间最初研究单位微波功率 P / kW缺点
    石英管式20世纪80年代初日本无机材料研究所膜质量低、速率慢,石英管污染导致微波功率受限
    石英钟罩式20世纪80年代末德国philips、美国ASTeX(现Seki)1~3石英钟罩污染导致微波功率受限
    圆柱谐振腔式1992年前后美国ASTeX(现Seki)1~5石英窗易受等离子影响而损毁
    环形天线式1993年美国ASTeX(现Seki)6~8沉积条件、谐振状态无法调整和优化
    椭球谐振腔式1997年前后德国Fraunhofer研究所6
    下载: 导出CSV

    表  2  早期915 MHz MPCVD设备[3]

    Table  2.   Early 915 MHz MPCVD device[3]

    腔室类型研究单位微波功率 P / kW沉积速率 V / (μm·h−1)沉积直径 D
    石英管式日本近畿大学1和71和5010 mm
    石英钟罩式美国密歇根州立大学300.03~0.4610~20 cm
    环形天线式美国ASTeX(现Seki)60~100108 in
    椭球谐振腔式德国Fraunhofer研究所601~15150 mm
    下载: 导出CSV

    表  3  沉积气体对MPCVD金刚石膜的影响

    Table  3.   Effect of deposition gas on MPCVD diamond film

    气体对沉积速率的影响主要作用
    CH4提高随着CH4浓度的增加,碳氢基团比例增加,沉积速率增加,但过量的CH4会形成非金刚石石墨相,使质量下降
    H2降低刻蚀生长过程中产生的非金刚石相,对金刚石也有微弱的刻蚀作用
    CO2提高刻蚀非金刚石相,促进CH4解离,提升金刚石质量
    O2提高提高金刚石纯度,过量O2不利于金刚石生长
    N2提高较大程度地提升金刚石沉积速率和质量,但会引入氮缺陷
    Ar提高提高金刚石生长的均匀性
    下载: 导出CSV

    表  4  金刚石光学窗口相关元件[67]

    Table  4.   Diamond optical window related components[67]

    波段 应用
    X射线 X射线窗口、X射线靶
    紫外线 深紫外窗口、金刚石微透镜
    可见光 金刚石压砧
    近红外 ATR组件、激光窗口、红外窗口 / 整流罩
    中红外 拉曼激光器
    远红外 太赫兹窗口
    微波 微波窗口、回旋窗口
    下载: 导出CSV
  • [1] 林晓棋, 满卫东, 张玮, 等. MPCVD法合成大单晶金刚石的研究进展 [J]. 硬质合金,2013,30(5):288-296.

    LIN Xiaoqi, MAN Weidong, ZHANG Wei, et al. Research progress on synthesis of large-scale single crystal diamond by MPCVD [J]. Cemented Carbide,2013,30(5):288-296.
    [2] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers [J]. Scientific Reports,2017,7:44462. doi: 10.1038/srep44462
    [3] 吕反修. 金刚石膜制备与应用:下卷 [M]. 北京: 科学出版社, 2014.

    LYU Fanxiu. Preparation and application of diamond film: Volume 2 [M]. Beijing: Science Press, 2014.
    [4] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature,1955,176(4471):51-55. doi: 10.1038/176051a0
    [5] ANGUS J C, WILL H A, STANKO W S. Growth of diamond seed crystals by vapor deposition [J]. Journal of Applied Physics, 1968, 39(6): 2915-2922. doi: 10.1063/1.1656693
    [6] GORDON M H, DUTEN X, HASSOUNI K, et al. Energy coupling efficiency of a hydrogen microwave plasma reactor [J]. Journal of Applied Physics, 2001, 89(3): 1544-1549. doi: 10.1063/1.1337593
    [7] VIKHAREV A L, GORBACHEV A M, KOZLOV A V, et al. Microcrystalline diamond growth in presence of argon in millimeter-wave plasma-assisted CVD reactor [J]. Diamond and Related Materials,2008,17(7/8/9/10):1055-1061. doi: 10.1016/j.diamond.2008.01.050
    [8] YAMAMOTO M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates [J]. Journal of Crystal Growth,2005,285(1/2):130-136. doi: 10.1016/j.jcrysgro.2005.08.019
    [9] LIN C R, LIAO W H, WEI D H, et al. Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets [J]. Surface and Coatings Technology,2013,231:594-598. doi: 10.1016/j.surfcoat.2012.01.052
    [10] FENDRYCH F, TAYLOR A, PEKSA L, et al. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system [J]. Journal of Physics D: Applied Physics,2010,43(37):374018. doi: 10.1088/0022-3727/43/37/374018
    [11] 刘金龙, 安康, 陈良贤, 等. CVD金刚石自支撑膜的研究进展 [J]. 表面技术,2018,47(4):1-10. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.001

    LIU Jinlong, AN Kang, CHEN Liangxian, et al. Research progress of free-standing CVD diamond films [J]. Surface Technology,2018,47(4):1-10. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.001
    [12] ASKARI S J, CHEN G C, LU F X. Growth of polycrystalline and nanocrystalline diamond films on pure titanium by microwave plasma assisted CVD process [J]. Materials Research Bulletin,2008,43(5):1086-1092. doi: 10.1016/j.materresbull.2007.06.010
    [13] SU J J, LI Y F, LI X L, et al. A novel microwave plasma reactor with a unique structure for chemical vapor deposition of diamond films [J]. Diamond and Related Materials,2014,42:28-32. doi: 10.1016/j.diamond.2013.12.001
    [14] 李义锋. 新型高功率MPCVD装置研制与金刚石膜高效沉积 [D]. 北京: 北京科技大学, 2015.

    LI Yifeng. Development of a new high power MPCVD device and efficient deposition of diamond films [D]. Beijing: University of Science and Technology Beijing, 2015.
    [15] 李义锋, 唐伟忠, 姜龙, 等. 915MHz高功率MPCVD装置制备大面积高品质金刚石膜 [J]. 人工晶体学报,2019,48(7):1262-1267. doi: 10.3969/j.issn.1000-985X.2019.07.013

    LI Yifeng, TANG Weizhong, JIANG Long, et al. Large area high quality diamond films deposition by 915 MHz high power MPCVD reactor [J]. Journal of Synthetic Crystals,2019,48(7):1262-1267. doi: 10.3969/j.issn.1000-985X.2019.07.013
    [16] 佚名. 微波等离子体化学气相沉积系统简介及研发进展[EB/OL]. (2020-07-10)[2023-07-13]. http://www.xdwh-inst.com/display/349355.html.

    Anonymous. Introduction and development progress of microwave plasma chemical vapor deposition system[EB/OL]. (2020-07-10)[2023-07-13]. http://www.xdwh-inst.com/display/349355.html.
    [17] SHIH H C, SUNG C P, TANG Y S, et al. Microstructure and characterization of diamond film grown on various substrates [J]. Surface and Coatings Technology,1992,52(2):105-114. doi: 10.1016/0257-8972(92)90034-8
    [18] SEDOV V, MARTYANOV A, ALTAKHOV A, et al. Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD [J]. Coatings,2020,10(10):939. doi: 10.3390/coatings10100939
    [19] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities [J]. Diamond and Related Materials,2019,97:107466. doi: 10.1016/j.diamond.2019.107466
    [20] MITSUDA Y, KOJIMA Y, YOSHIDA T, et al. The growth of diamond in microwave plasma under low pressure [J]. Journal of Materials Science,1987,22(5):1557-1562. doi: 10.1007/BF01132374
    [21] 张青, 翁俊, 刘繁, 等. 高功率微波等离子体对单晶金刚石同质外延生长的影响 [J]. 表面技术,2022,51(6):364-373,398. doi: 10.16490/j.cnki.issn.1001-3660.2022.06.035

    ZHANG Qing, WENG Jun, LIU Fan, et al. Effect of high microwave power plasma on the homogeneous epitaxy growth of single crystal diamond [J]. Surface Technology,2022,51(6):364-373,398. doi: 10.16490/j.cnki.issn.1001-3660.2022.06.035
    [22] MANDAL S. Nucleation of diamond films on heterogeneous substrates: A review [J]. RSC Advances,2021,11(17):10159-10182. doi: 10.1039/D1RA00397F
    [23] TANG C J, FERNANDES A J S, JIANG X F, et al. Effect of methane concentration in hydrogen plasma on hydrogen impurity incorporation in thick large-grained polycrystalline diamond films [J]. Journal of Crystal Growth,2015,426:221-227. doi: 10.1016/j.jcrysgro.2015.06.018
    [24] 罗凯, 汪建华, 余军火, 等. 高功率微波等离子体环境下甲烷浓度对金刚石膜的影响 [J]. 化工学报,2018,69(S2):505-511. doi: 10.11949/j.issn.0438-1157.20181169

    LUO Kai, WANG Jianhua, YU Junhuo, et al. Effect of methane concentration on diamond film in high power microwave plasma environment [J]. CIESC Journal,2018,69(S2):505-511. doi: 10.11949/j.issn.0438-1157.20181169
    [25] MÜLLER-SEBERT W, WÖRNER E, FUCHS F, et al. Nitrogen induced increase of growth rate in chemical vapor deposition of diamond [J]. Applied Physics Letters,1996,68(6):759-760. doi: 10.1063/1.116733
    [26] SEDOV V, MARTYANOV A, SAVIN S, et al. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas [J]. Diamond and Related Materials,2021,114:108333. doi: 10.1016/j.diamond.2021.108333
    [27] 王蒙, 翁俊, 刘繁, 等. 氩气对高功率MPCVD制备金刚石膜的影响 [J]. 化学工程与装备,2021(10):5-6. doi: 10.19566/j.cnki.cn35-1285/tq.2021.10.003

    WANG Meng, WENG Jun, LIU Fan, et al. Effect of argon on diamond films prepared by high power MPCVD [J]. Chemical Engineering & Equipment,2021(10):5-6. doi: 10.19566/j.cnki.cn35-1285/tq.2021.10.003
    [28] CHEIN T H, WEI J, TZENG Y. Synthesis of diamond in high power-density microwave methane/hydrogen/oxygen plasmas at elevated substrate temperatures [J]. Diamond and Related Materials,1999,8(8/9):1686-1696. doi: 10.1016/S0925-9635(99)00059-X
    [29] ANDO Y, YOKOTA Y, TACHIBANA T, et al. Large area deposition of 〈100〉-textured diamond films by a 60-kW microwave plasma CVD reactor [J]. Diamond and Related Materials,2002,11(3/4/5/6):596-600. doi: 10.1016/S0925-9635(02)00018-3
    [30] HEMAWAN K W, GROTJOHN T A, REINHARD D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density [J]. Diamond and Related Materials,2010,19(12):1446-1452. doi: 10.1016/j.diamond.2010.07.005
    [31] KAMO M, SATO Y, MATSUMOTO S, et al. Diamond synthesis from gas phase in microwave plasma [J]. Journal of Crystal Growth,1983,62(3):642-644. doi: 10.1016/0022-0248(83)90411-6
    [32] RALCHENKO V G, SAVELIEV A V, POPOVICH A F, et al. CVD diamond coating of AlN ceramic substrates to enhance heat removal [J]. Russian Microelectronics,2006,35(4):205-209. doi: 10.1134/S1063739706040019
    [33] VIKHAREV A L, GORBACHEV A M, LOBAEV M A, et al. Multimode cavity type MPACVD reactor for large area diamond film deposition [J]. Diamond and Related Materials,2018,83:8-14. doi: 10.1016/j.diamond.2018.01.011
    [34] HONG S P, LEE K I, YOU H J, et al. Scanning deposition method for large-area diamond film synthesis using multiple microwave plasma sources [J]. Nanomaterials,2022,12(12):1959. doi: 10.3390/nano12121959
    [35] RIFAI A, CREEDON D, TRAN N, et al. Highly uniform polycrystalline diamond coatings of three-dimensional structures [J]. Surface and Coatings Technology,2021,408:126815. doi: 10.1016/j.surfcoat.2020.126815
    [36] FÜNER M, WILD C, KOIDL P. Simulation and development of optimized microwave plasma reactors for diamond deposition [J]. Surface and Coatings Technology,1999,116:853-862. doi: 10.1016/S0257-8972(99)00233-9
    [37] YAMADA H, CHAYAHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size [J]. Diamond and Related Materials,2012,24:29-33. doi: 10.1016/j.diamond.2011.09.007
    [38] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond [J]. Diamond and Related Materials,2013,33:27-31. doi: 10.1016/j.diamond.2012.12.012
    [39] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond [J]. Applied Physics Letters, 14, 104(10): 102110.
    [40] 佚名. 金刚石半导体越来越近[EB/OL]. (2022-04-04)[2024-04-15]. https://baijiahao.baidu.com/s?id=1762216523971146798&wfr=spider&for=pc.

    Anonymous. Diamond semiconductors are getting closer and closer [EB/OL]. (2022-04-04)[2024-04-15]. https://baijiahao.baidu.com/s?id=1762216523971146798&wfr=spider&for=pc.
    [41] DT半导体材料. 全球首个!100 mm的金刚石晶圆面世 [EB/OL]. (2023-1-08)[2024-04-16]. https://www.eet-china.com/mp/a264952.html

    DT semiconductor material. World’s first diamond wafer [EB/OL]. (2023-1-08)[2024-04-16]. https://www.eet-china.com/mp/a264952.html.
    [42] SU J J, LI Y F, DING M H, et al. A dome-shaped cavity type microwave plasma chemical vapor deposition reactor for diamond films deposition [J]. Vacuum,2014,107:51-55.
    [43] LI X J, TANG W Z, YU S W, et al. Design of novel plasma reactor for diamond film deposition [J]. Diamond and Related Materials,2011,20(4):480-484. doi: 10.1016/j.diamond.2011.01.046
    [44] LI Y F, SU J J, LIU Y Q, et al. Design of a new TM021 mode cavity type MPCVD reactor for diamond film deposition [J]. Diamond and Related Materials,2014,44:88-94. doi: 10.1016/j.diamond.2014.02.010
    [45] LI Y F, AN X M, LIU X C, et al. A 915MHz/75kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films [J]. Diamond and Related Materials,2017,78:67-72. doi: 10.1016/j.diamond.2017.08.007
    [46] 张帅, 安康, 杨志亮, 等. 新型MPCVD沉积模式制备高均匀性的D100 mm金刚石薄膜 [J]. 真空与低温,2022,28(5):549-555. doi: 10.3969/j.issn.1006-7086.2022.05.008

    ZHANG Shuai, AN Kang, YANG Zhiliang, et al. 100 mm in diameter diamond films with high uniformity prepared by novel deposition mode in MPCVD system [J]. Vacuum and Cryogenics,2022,28(5):549-555. doi: 10.3969/j.issn.1006-7086.2022.05.008
    [47] 于盛旺, 安康, 李晓静, 等. 高功率MPCVD金刚石膜红外光学材料制备 [J]. 红外与激光工程,2013,42(4):971-974. doi: 10.3969/j.issn.1007-2276.2013.04.025

    YU Shengwang, AN Kang, LI Xiaojing, et al. Preparation of diamond films as an infrared optical material by high power microwave plasma CVD [J]. Infrared and Laser Engineering,2013,42(4):971-974. doi: 10.3969/j.issn.1007-2276.2013.04.025
    [48] 于盛旺, 刘艳青, 唐伟忠, 等. 高功率MPCVD金刚石膜透波窗口材料制备研究 [J]. 人工晶体学报,2012,41(4):896-899. doi: 10.3969/j.issn.1000-985X.2012.04.014

    YU Shengwang, LIU Yanqing, TANG Weizhong, et al. Synthesis of diamond film as electromagnetic window material by an ellipsoidal MPCVD reactor at high input microwave power levels [J]. Journal of Synthetic Crystals,2012,41(4):896-899. doi: 10.3969/j.issn.1000-985X.2012.04.014
    [49] YU S W, WANG R, ZHENG K, et al. Influence of power density on high purity 63 mm diameter polycrystalline diamond deposition inside a 2.45 GHz MPCVD reactor [J]. Journal of Physics D: Applied Physics,2016,49(35):355202. doi: 10.1088/0022-3727/49/35/355202
    [50] LI X J, ZHOU S, CHEN G, et al. Systematic research on the performance of self-designed microwave plasma reactor for CVD high quality diamond [J]. Defence Technology,2018,14(5):373-379. doi: 10.1016/j.dt.2018.05.004
    [51] 杨国永, 熊绍阳, 鲁云祥, 等. 大尺寸自支撑金刚石膜制备工艺及其红外透过性能研究 [J]. 硬质合金,2020,37(5):350-356. doi: 10.3969/j.issn.1003-7292.2020.05.004

    YANG Guoyong, XIONG Shaoyang, LU Yunxiang, et al. Study of large-area free-standing diamond films and its property of infrared transmittance [J]. Cemented Carbide,2020,37(5):350-356. doi: 10.3969/j.issn.1003-7292.2020.05.004
    [52] 佚名. 郑州大学研制出两英寸光学级金刚石晶体[EB/OL]. (2019-09-26)[2023-07-14]. https://www.nsfc.gov.cn/csc/20340/20289/45388/index.html.

    Anonymous. Zhengzhou University has developed two inch optical grade diamond crystals [EB/OL]. (2019-09-26)[2023-07-14]. https://www.nsfc.gov.cn/csc/20340/20289/45388/index.html.
    [53] 梁天, 汪建华, 翁俊, 等. 高气压对MPCVD沉积金刚石薄膜的影响 [J]. 真空与低温,2018,24(1):54-59. doi: 10.3969/j.issn.1006-7086.2018.01.010

    LIANG Tian, WANG Jianhua, WENG Jun, et al. Influence of high pressure on MPCVD deposition of diamond films [J]. Vacuum and Cryogenics,2018,24(1):54-59. doi: 10.3969/j.issn.1006-7086.2018.01.010
    [54] 丁康俊, 马志斌, 宋修曦, 等. 温度对MPCVD法同质外延单晶金刚石缺陷的影响 [J]. 金刚石与磨料磨具工程,2018,38(2):8-11,19. doi: 10.13394/j.cnkij.gszz.2018.2.0002

    DING Kangjun, MA Zhibin, SONG Xiuxi, et al. Effect of temperature on defects in homoepitaxial single crystal diamond by MPCVD [J]. Diamond & Abrasives Engineering,2018,38(2):8-11,19. doi: 10.13394/j.cnkij.gszz.2018.2.0002
    [55] 夏禹豪, 李艳春, 耿传文, 等. MPCVD中双基片台结构对单晶金刚石生长的影响 [J]. 金刚石与磨料磨具工程,2018,38(3):1-5. doi: 10.13394/j.cnki.jgszz.2018.3.0001

    XIA Yuhao, LI Yanchun, GENG Chuanwen, et al. Influence of dual-substrate structure on growth of single crystal diamond by MPCVD [J]. Diamond & Abrasives Engineering,2018,38(3):1-5. doi: 10.13394/j.cnki.jgszz.2018.3.0001
    [56] 夏禹豪, 耿传文, 衡凡, 等. MPCVD法中氮气对单晶金刚石生长机理影响的探究 [J]. 真空科学与技术学报,2018,38(8):684-688. doi: 10.13922/j.cnki.cjovst.2018.08.07

    XIA Yuhao, GENG Chuanwen, HENG Fan, et al. Impact of nitrogen concentration on monocrystalline diamond growth in microwave plasma chemical vapor deposition [J]. Chinese Journal of Vacuum Science and Technology,2018,38(8):684-688. doi: 10.13922/j.cnki.cjovst.2018.08.07
    [57] 王斌, 汪建华, 翁俊, 等. 气体流动方式对MPCVD金刚石薄膜均匀性的影响 [J]. 真空与低温,2020,26(2):108-113. doi: 10.3969/j.issn.1006-7086.2020.02.004

    WANG Bin, WANG Jianhua, WENG Jun, et al. Effect of gas flow mode on uniformity of MPCVD diamond films [J]. Vacuum and Cryogenics,2020,26(2):108-113. doi: 10.3969/j.issn.1006-7086.2020.02.004
    [58] 何中文, 马志斌. 高等离子体功率密度下MPCVD法制备多晶金刚石膜 [J]. 金刚石与磨料磨具工程,2022,42(2):156-161. doi: 10.13394/J.cnki.jgszz.2021.0121

    HE Zhongwen, MA Zhibin. Preparation of polycrystalline diamond films by MPCVD at high plasma power density [J]. Diamond & Abrasives Engineering,2022,42(2):156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
    [59] WANG Q J, WU G, LIU S, et al. Simulation-based development of a new cylindrical-cavity microwave-plasma reactor for diamond-film synthesis [J]. Crystals,2019,9(6):320. doi: 10.3390/cryst9060320
    [60] YANG B, SHEN Q, GAN Z Y, et al. Analysis of improving the edge quality and growth rate of single-crystal diamond growth using a substrate holder [J]. CrystEngComm,2019,21(43):6574-6584. doi: 10.1039/C9CE01402K
    [61] BANERJEE A, BERNOULLI D, ZHANG H T, et al. Ultralarge elastic de-formation of nanoscale diamond [J]. Science,2018,360(6386):300-302. doi: 10.1126/science.aar4165
    [62] 陈良贤, 刘金龙, 冯寅楠, 等. 金刚石上不同晶体结构Y2O3膜性质与增透性能研究 [J]. 表面技术,2019,48(1):133-140. doi: 10.16490/j.cnki.issn.1001-3660.2019.01.017

    CHEN Liangxian, LIU Jinlong, FENG Yinnan, et al. Properties and anti-reflection performance of Y2O3 films with different crystal structures on diamond [J]. Surface Technology,2019,48(1):133-140. doi: 10.16490/j.cnki.issn.1001-3660.2019.01.017
    [63] 左杨平, 卢文壮, 张圣斌, 等. 面向激光防护应用的金刚石/V2O5膜系设计与制备 [J]. 红外与激光工程,2015,44(8):2491-2495. doi: 10.3969/j.issn.1007-2276.2015.08.042

    ZUO Yangping, LU Wenzhuang, ZHANG Shengbin, et al. Design and fabrication of diamond/V2O5 films in continuous laser protection [J]. Infrared and Laser Engineering,2015,44(8):2491-2495. doi: 10.3969/j.issn.1007-2276.2015.08.042
    [64] 吕反修, 高旭辉, 郭会斌, 等. 在预涂陶瓷过渡层的多谱段ZnS衬底上沉积金刚石膜的探索研究 [J]. 人工晶体学报,2004,33(1):105-108. doi: 10.3969/j.issn.1000-985X.2004.01.023

    LYU Fanxiu, GAO Xuhui, GUO Huibin, et al. An exploratory study on preparation of diamond film coatings on multi-spectra ZnS pre-coated with a ceramic interlayer [J]. Journal of Synthetic Crystals,2004,33(1):105-108. doi: 10.3969/j.issn.1000-985X.2004.01.023
    [65] 黄亚博, 陈良贤, 贾鑫, 等. CVD金刚石表面增透膜的研究进展 [J]. 表面技术,2020,49(10):106-117. doi: 10.16490/j.cnki.issn.1001-3660.2020.10.012

    HUANG Yabo, CHEN Liangxian, JIA Xin, et al. Research progress of anti-reflection films on CVD diamond surface [J]. Surface Technology,2020,49(10):106-117. doi: 10.16490/j.cnki.issn.1001-3660.2020.10.012
    [66] 白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀) [J]. 红外与激光工程,2020,49(12):9-21. doi: 10.3788/IRLA20201076

    BAI Zhenxu, YANG Xuezong, CHEN Hui, et al. Research progress of high-power diamond laser technology(Invited) [J]. Infrared and Laser Engineering,2020,49(12):9-21. doi: 10.3788/IRLA20201076
    [67] 王伟华, 代兵, 王杨, 等. 金刚石光学窗口相关元件的研究进展 [J]. 材料科学与工艺,2020,28(3):42-57. doi: 10.11951/j.issn.1005-0299.20200074

    WANG Weihua, DAI Bing, WANG Yang, et al. Recent progress of diamond optical window-related components [J]. Materials Science and Technology,2020,28(3):42-57. doi: 10.11951/j.issn.1005-0299.20200074
    [68] Optics: Enable extreme performance photonics [EB/OL]. [2021-07-14]. https://www.e6.com/en/knowledge-base/brochures.
    [69] 李凤凤, 刘永佳, 张建华. 培育钻石的发展现状及应用研究 [J]. 超硬材料工程,2022,34(4):51-54. doi: 10.3969/j.issn.1673-1433.2022.04.011

    LI Fengfeng, LIU Yongjia, ZHANG Jianhua. Development status and application of diamond cultivation [J]. Superhard Material Engineering,2022,34(4):51-54. doi: 10.3969/j.issn.1673-1433.2022.04.011
    [70] 王光祖, 位星, 张相法, 等. 饰钻培育技术的由来与兴起 [J]. 超硬材料工程,2022,34(5):42-47. doi: 10.3969/j.issn.1673-1433.2022.05.010

    WANG Guangzu, WEI Xing, ZHANG Xiangfa, et al. Origin and rise of decorative diamond cultivation technology [J]. Superhard Material Engineering,2022,34(5):42-47. doi: 10.3969/j.issn.1673-1433.2022.05.010
    [71] 佚名. GIA鉴定34.59克拉化学气相沉积法(CVD)实验室培育钻石 [EB/OL]. (2023-05-29)[2023-07-14]. https://baijiahao.baidu.com/s?id=1767205622858628324&wfr=spider&for=pc.

    Anonymous. GIA Identification 34.59 Carat Chemical Vapor Deposition (CVD) Laboratory Cultivated Diamond [EB/OL]. (2023-05-29)[2023-07-14]. https://baijiahao.baidu.com/s?id=1767205622858628324&wfr=spider&for=pc.
    [72] CVD diamond: The element six diamond handbook [EB/OL]. [2021-07-14]. https://www.e6.com/zh/products/optics.
    [73] 杨士奇, 任泽阳, 张金风, 等. 硅基氮化镓异质结材料与多晶金刚石集成生长研究 [J]. 固体电子学研究与进展,2021,41(1):18-23. doi: 10.19623/j.cnki.rpsse.2021.01.005

    YANG Shiqi, REN Zeyang, ZHANG Jinfeng, et al. Research on growth of poly-crystalline diamond on Si-based GaN heterojunction material [J]. Research & Progress of SSE,2021,41(1):18-23. doi: 10.19623/j.cnki.rpsse.2021.01.005
    [74] ZHOU Y, ANAYA J, POMEROY J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling [J]. ACS Applied Materials & Interfaces,2017,9(39):34416-34422. doi: 10.1021/acsami.7b08961
    [75] WANG K, RUAN K, HU W B, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices [J]. Scripta Materialia,2020,174:87-90. doi: 10.1016/j.scriptamat.2019.08.029
    [76] ZHAO Y, LI C M, LIU J L, et al. The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth [J]. Materials,2019,12(15):2492. doi: 10.3390/ma12152492
    [77] LU M C. Development of diamond device-level heat spreader for the advancement of GaN HEMT power and RF electronics [J]. IEEE Transactions on Device and Materials Reliability,2023,23(4):468-485. doi: 10.1109/TDMR.2023.3310510
    [78] FRANCIS D, FAILI F, BABIĆ D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates [J]. Diamond and Related Materials,2010,19(2/3):229-233.
    [79] DELMAS W, JARZEMBSKI A, BAHR M, et al. Thermal transport and mechanical stress mapping of a compression bonded GaN/diamond interface for vertical power devices [J]. ACS Applied Materials & Interfaces,2024,16(8):11003-11012.
    [80] CHENG Z, MU F W, YATES L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices [J]. ACS Applied Materials & Interfaces,2020,12(7):8376-8384. doi: 10.1021/acsami.9b16959
    [81] HU X F, GE L, LIU Z H, et al. Diamond-SiC composite substrates: A novel strategy as efficient heat sinks for GaN-based devices [J]. Carbon,2024,218:118755. doi: 10.1016/j.carbon.2023.118755
    [82] 刘金龙, 朱肖华, 郭彦召, 等. 金刚石探测器材料研制与中子探测性能研究 [J]. 真空电子技术,2021(5):46-53,72. doi: 10.16540/j.cnki.cn11-2485/tn.2021.05.06

    LIU Jinlong, ZHU Xiaohua, GUO Yanzhao, et al. Material development and neutron detection performance of diamond detector [J]. Vacuum Electronics,2021(5):46-53,72. doi: 10.16540/j.cnki.cn11-2485/tn.2021.05.06
    [83] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition [J]. International Journal of Minerals, Metallurgy and Materials,2020,27(5):703-712. doi: 10.1007/s12613-019-1944-0
    [84] 李成明, 任飞桐, 邵思武, 等. 化学气相沉积(CVD)金刚石研究现状和发展趋势 [J]. 人工晶体学报,2022,51(5):759-780. doi: 10.3969/j.issn.1000-985X.2022.05.003

    LI Chengming, REN Feitong, SHAO Siwu, et al. Progress of chemical vapor deposition (CVD) diamond [J]. Journal of Synthetic Crystals,2022,51(5):759-780. doi: 10.3969/j.issn.1000-985X.2022.05.003
    [85] TARELKIN S, BORMASHOV V, BUGA S, et al. Power diamond vertical Schottky barrier diode with 10 A forward current [J]. Physica Status Solidi (A),2015,212(11):2621-2627. doi: 10.1002/pssa.201532213
    [86] LIU B J, ZHANG S, RALCHENKO V, et al. High temperature operation of logic AND gate based on diamond Schottky diodes fabricated by selective growth method [J]. Carbon,2022,197:292-300. doi: 10.1016/j.carbon.2022.06.040
    [87] ARAUJO D, SUZUKI M, LLORET F, et al. Diamond for electronics: Materials, processing and devices [J]. Materials,2021,14(22):7081. doi: 10.3390/ma14227081
    [88] PHAM T T. 200 V, 4 MV/cm lateral diamond [C]// 2017 IEEE International Electron Devices Meeting (IEDM), 2017.
    [89] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown E6 electronic grade diamond [J]. Carbon,2020,169:440-445. doi: 10.1016/j.carbon.2020.07.079
    [90] KAWARADA H. Hydrogen-terminated diamond surfaces and interfaces [J]. Surface Science Reports,1996,26(7):205-259. doi: 10.1016/S0167-5729(97)80002-7
    [91] ZHANG Q, GUO Y H, JI W T, et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion [J]. Nature Communications,2021,12(1):1529. doi: 10.1038/s41467-021-21781-5
    [92] BUCHER D B, AUDE CRAIK D P L, BACKLUND M P, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy [J]. Nature Protocols,2019,14(9):2707-2747. doi: 10.1038/s41596-019-0201-3
    [93] 环球网. 全球首款金刚石量子计算教学机发布 [J]. 超硬材料工程, 2019, 31(4): 59.

    World Wide Web. The world's first diamond quantum computing teaching machine was released [J]. Superhard Material Engineering, 2019, 31(4): 59.
    [94] 佚名. 日本开发适用量子计算机的金刚石晶圆制造技术[EB/OL]. (2022-05-13)[2023-07-14]. https://baijiahao.baidu.com/s?id=1732674398077513655&wfr=spider&for=pc.

    Anonymous. Japan develops diamond wafer manufacturing technology suitable for quantum computers[EB/OL]. (2022-05-13)[2023-07-14]. https://baijiahao.baidu.com/s?id=1732674398077513655&wfr=spider&for=pc.
    [95] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array [J]. Carbon,2021,173:427-432. doi: 10.1016/j.carbon.2020.11.013
    [96] ZHANG Z F, LIN C N, YANG X, et al. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging [J]. Journal of Materials Chemistry C,2022,10(16):6488-6496. doi: 10.1039/D2TC00327A
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-05-23
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回