CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用磁性微磨料射流技术光整加工交叉深孔内壁

王泽志 王杰 马小刚 李帆 范新亚 陈燕

王泽志, 王杰, 马小刚, 李帆, 范新亚, 陈燕. 用磁性微磨料射流技术光整加工交叉深孔内壁[J]. 金刚石与磨料磨具工程, 2025, 45(2): 245-255. doi: 10.13394/j.cnki.jgszz.2023.0277
引用本文: 王泽志, 王杰, 马小刚, 李帆, 范新亚, 陈燕. 用磁性微磨料射流技术光整加工交叉深孔内壁[J]. 金刚石与磨料磨具工程, 2025, 45(2): 245-255. doi: 10.13394/j.cnki.jgszz.2023.0277
WANG Zezhi, WANG Jie, MA Xiaogang, LI Fan, FAN Xinya, CHEN Yan. Polishing inner wall of crossed deep micropores using magnetic microabrasive jet technology[J]. Diamond & Abrasives Engineering, 2025, 45(2): 245-255. doi: 10.13394/j.cnki.jgszz.2023.0277
Citation: WANG Zezhi, WANG Jie, MA Xiaogang, LI Fan, FAN Xinya, CHEN Yan. Polishing inner wall of crossed deep micropores using magnetic microabrasive jet technology[J]. Diamond & Abrasives Engineering, 2025, 45(2): 245-255. doi: 10.13394/j.cnki.jgszz.2023.0277

用磁性微磨料射流技术光整加工交叉深孔内壁

doi: 10.13394/j.cnki.jgszz.2023.0277
基金项目: 国家自然科学基金(51775258); 辽宁省自然科学基金重点项目(20170540458); 精密与特种加工教育部重点实验室基金 (B201703)。
详细信息
    作者简介:

    通信作者:马小刚,男,1985年生,博士、副教授。主要研究方向:精密加工。E-mail:mxg_fy@163.com

  • 中图分类号: TG73; TG58; TG356.28

Polishing inner wall of crossed deep micropores using magnetic microabrasive jet technology

  • 摘要: 针对交叉深孔内壁常规光整加工尺寸受限、加工不均匀、质量差等问题,结合磨料射流去除函数稳定、自适应性强等特点,用磁性微磨料射流技术对交叉深孔内壁进行光整加工以提高其质量。通过动态磁场下的磁性微磨料聚焦技术,采用有限元法和离散元法耦合对不同参数下的磁性微磨料射流抛光交叉深孔内壁过程进行模拟,分析不同参数下的流场分布、侵蚀速率、壁面剪切力作用规律。通过响应面法对射流靶距、射流压强及喷嘴直径3参数进行优化,以孔口、孔内壁面及孔交叉部分所受的壁面剪切力和侵蚀速率的综合影响为响应值,建立响应面方程,获得最佳参数组合并进行试验验证。结果表明:利用响应面法得到的最佳工艺参数组合是射流靶距为7.0 mm,射流压强为1.0 MPa,喷嘴直径为1.4 mm;在此组合参数下加工的交叉深孔内部相贯处毛刺等缺陷被有效去除,其内壁面孔附近的表面粗糙度Ra从0.49 μm降至0.13 μm,且孔口处有较好的倒圆效果。

     

  • 图  1  加工装置示意图

    Figure  1.  Schematic diagram of processing equipment

    图  2  工件实物图及喷嘴物理模型

    Figure  2.  Workpiece physical drawing and nozzle physical model

    图  3  磨粒冲击与剪切工件模型

    Figure  3.  Model of abrasive impact and shear workpiece

    图  4  物理可视化模型截面

    Figure  4.  Physical visualization model cross-section

    图  5  磨料颗粒与流体的速度变化曲线

    Figure  5.  Velocity variation curves between abrasive particles and fluid

    图  6  喷嘴内部的速度仿真结果

    Figure  6.  Simulation results of velocity inside nozzle

    图  7  工件形变情况

    Figure  7.  Deformation of workpiece

    图  8  磁场矢量图

    Figure  8.  Vector diagram of magnetic field

    图  9  未添加磁场辅助的磨料运动轨迹

    Figure  9.  Abrasive motion trajectory before adding magnetic field

    图  10  添加磁场辅助后的磨料运动轨迹

    Figure  10.  Abrasive motion trajectory after adding magnetic field

    图  11  压力云图

    Figure  11.  Pressure nephogram

    图  12  孔内射流速度变化曲线

    Figure  12.  Variation curves of jet velocity inside hole

    图  13  壁面剪切应力云图

    Figure  13.  Wall shear stress nephogram

    图  14  壁面冲蚀云图

    Figure  14.  Wall erosion cloud map

    图  15  射流在空气中的速度变化云图及发散情况

    Figure  15.  Velocity change nephogram and divergence of jet in air

    图  16  射流在空气中的发散情况

    Figure  16.  Divergence of jet in air

    图  17  压强和靶距的交互影响

    Figure  17.  Interactive effect of pressure and target distance

    图  18  压强和喷嘴直径的交互影响

    Figure  18.  Interactive effect of pressure and nozzle diameter

    图  19  靶距和喷嘴直径的交互影响

    Figure  19.  Interactive effect of target distance and nozzle diameter

    图  20  加工前后工件表面形貌及表面粗糙度

    Figure  20.  Surface morphology and surface roughness of workpiece before and after processing

    表  1  研磨介质成分及参数

    Table  1.   Composition and parameters of grinding medium

    成分基本颗粒尺寸 D1 / $ \mathrm{\mu }\mathrm{m} $质量分数 ω / %
    α-Al2O3磁性磨料505.0
    悬浮剂0.1
    分散剂0.3
    纯净水余量
    下载: 导出CSV

    表  2  不同射流压强下射流的最大速度和质量流率

    Table  2.   Maximum velocity and mass flow rate of jet under different jet pressures

    压强 p' / MPa 射流最大速度 vmax / (m·s−1) 质量流率 M / (kg·s−1)
    0.1 14.3 0.0205
    0.4 29.0 0.0413
    0.7 38.6 0.0548
    1.0 46.2 0.0656
    1.3 52.8 0.0749
    下载: 导出CSV

    表  3  试验设计的因素及水平

    Table  3.   Factors and levels of experimental design

    水平 因素
    射流靶距 d / mm
    A
    射流压强 p' / MPa
    B
    喷嘴直径 D2 / mm
    C
    −1 4.0 0.8 0.8
    0 7.0 1.0 1.4
    1 10.0 1.2 2.0
    下载: 导出CSV

    表  4  响应面法计算结果

    Table  4.   Response surface method calculation results

    因素 平方和 SS 自由度 df 均方值 MS F P
    模型 2.28 × 105 9 2.53 × 105 801.04 < 0.0001
    A 2.73 × 105 1 2.73 × 105 861.83 < 0.0001
    B 1.48 × 105 1 1.48 × 105 469.72 < 0.0001
    C 2.04 × 105 1 2.04 × 105 644.33 < 0.0001
    AB 716.71 1 716.71 2.26 0.1762
    AC 6531.30 1 6531.30 20.62 0.0027
    BC 13239.02 1 13239.02 41.80 0.0003
    A2 1.28 × 105 1 1.28 × 105 406.57 < 0.0001
    B2 6.46 × 105 1 6.46 × 105 2039.36 < 0.0001
    C2 7.11 × 105 1 7.11 × 105 2247.39 < 0.0001
    残差 2217.29 7 316.76
    失拟量 2217.29 3 739.10
    误差 0.00 4 0.01
    总和 2.28 × 106 16
    下载: 导出CSV
  • [1] 冯绮雯, 吴戈, 陆燕华, 等. 航天电液伺服机构多余物控制研究 [J]. 质量与可靠性,2023(2):8-13.

    FENG Qiwen, WU Ge, LU Yanhua, et al. Research on excess control of aerospace electro-hydraulic servo mechanism [J]. Quality and Reliability,2023(2):8-13.
    [2] 陈国文, 王德新, 金秀杰. 电加工技术在航空发动机制造中的应用 [J]. 金属加工(冷加工),2010(16):25-26.

    CHEN Guowen, WANG Dexin, JIN Xiujie. Application of electrical machining technology in aircraft engine manufacturing [J]. Metal Processing (Cold Working),2010(16):25-26.
    [3] 姜俊, 舒鑫, 雍建华, 等. 金属切削毛刺形成与控制技术研究进展 [J]. 工具技术,2021,55(7):3-10. doi: 10.3969/j.issn.1000-7008.2021.07.001

    JIANG Jun, SHU Xin, YONG Jianhua, et al. Research progress of metal cutting burr formation and control technology [J]. Tool Technology,2021,55(7):3-10. doi: 10.3969/j.issn.1000-7008.2021.07.001
    [4] 周悦, 王雨婷, 伊福廷, 等. 基于磁流变技术的微孔内壁抛光装置研制及性能研究 [J]. 表面技术,2018,47(6):252-257. doi: 10.16490/j.cnki.issn.1001-3660.2018.06.036

    ZHOU Yue, WANG Yuting, YI Futing, et al. Development and performance study of microporous inner wall polishing device based on magnetorheological technology [J]. Surface Technology,2018,47(6):252-257. doi: 10.16490/j.cnki.issn.1001-3660.2018.06.036
    [5] 石沛. 钛合金管内壁珩磨式磁流变抛光方法及机理研究 [D]. 沈阳: 东北大学, 2019.

    SHI Pei. Study on honing magnetorheological polishing method and mechanism of inner wall of titanium alloy tube [D]. Shenyang: Northeastern University, 2019.
    [6] FURUMOTOT, UEDA T, AMINO T, et al. A study of internal face finishing of the cooling channel in injection mold with free abrasive grains [J]. Journal of Materials Processing Technology,2011,211(11):1742-1748. doi: 10.1016/j.jmatprotec.2011.05.018
    [7] WANG H Q, WEI H Q, PENG C, et al. Application of abrasive flow machining in removing surface defect in metal parts of 3D printing: The 20th International Symposium on Advances in Abrasive Technology(ISAAT-2017) [C]. Okinawa: Manufa-Cturing Automation, 2017.
    [8] 朱慧宁, 马小刚, 程海东, 等. 磁针磁力研磨工艺对发动机涡轮叶片表面质量的试验研究 [J]. 航空制造术,2021,64(18):62-68. doi: 10.16080/j.issn1671-833x.2021.18.062

    ZHU Huining, MA Xiaogang, CHENG Haidong, et al. Experimental study on surface quality of engine turbine blades by magnetic needle magnetic grinding process [J]. Aeronautical Manufacturing,2021,64(18):62-68. doi: 10.16080/j.issn1671-833x.2021.18.062
    [9] 邓乾发, 汪杨笑, 吕冰海, 等. 自激脉冲特性磨料水射流浸没式抛光数值分析与有效性实验验证 [J]. 表面技术,2022,51(1):161-173. doi: 10.16490/j.cnki.issn.1001-3660.2022.01.017

    DENG Qianfa, WANG Yangxiao, LV Binghai, et al. Numerical analysis and effectiveness verification of self-excited pulse characteristics abrasive waterjet immersion polishing [J]. Surface Technology,2022,51(1):161-173. doi: 10.16490/j.cnki.issn.1001-3660.2022.01.017
    [10] 林琳, 何周伟, 胡涛, 等. 磨料水射流抛光技术进展综述 [J]. 液压与气动,2022,46(1):74-91. doi: 10.11832/j.issn.1000-4858.2022.01.010

    LIN Lin, HE Zhouwei, HU Tao, et al. Review of progress of abrasive waterjet polishing technology [J]. Hydraulics & Pneumatics,2022,46(1):74-91. doi: 10.11832/j.issn.1000-4858.2022.01.010
    [11] 王中昱, 张连新, 孙鹏飞, 等. 磨料水射流抛光技术综述 [J]. 电加工与模具,2019(1):70-74. doi: 10.3969/j.issn.1009-279X.2019.z1.014

    WANG Zhongyu, ZHANG Lianxin, SUN Pengfei, et al. Review of abrasive waterjet polishing technology [J]. Electrical Processing and Mold,2019(1):70-74. doi: 10.3969/j.issn.1009-279X.2019.z1.014
    [12] 王志阳, 王凯. 基于FLUENT的磨料水射流抛光喷嘴的流场仿真 [J]. 中国设备工程,2017(9):101-103. doi: 10.3969/j.issn.1671-0711.2017.09.053

    WANG Zhiyang, WANG Kai. Flow field simulation of abrasive waterjet polishing nozzle based on FLUENT [J]. China Equipment Engineering,2017(9):101-103. doi: 10.3969/j.issn.1671-0711.2017.09.053
    [13] 刘超, 刘聪. 前混合磨料水射流技术在煤矿井下的应用前景分析 [J]. 煤矿机械,2016,37(8):3-6. doi: 10.13436/j.mkjx.201608002

    LIU Chao, LIU Cong. Application prospect analysis of pre-mixed abrasive water jet technology in coal mine downground [J]. Coal Mining Machinery,2016,37(8):3-6. doi: 10.13436/j.mkjx.201608002
    [14] 陈逢军, 尹业青, 胡天. 仿形喷嘴磨料射流抛光微结构仿真及试验研究 [J]. 机械工程学报,2022,58(15):177-187. doi: 10.3901/JME.2022.15.177

    CHEN Fengjun, YIN Yeqing, HU Tian, et al. Simulation and experimental study on microstructure of abrasive jet polishing of profiling nozzles [J]. Journal of Mechanical Engineering,2022,58(15):177-187. doi: 10.3901/JME.2022.15.177
    [15] 花煜昌. 前混合磨料水射流切割45号钢的切深理论与试验研究 [D]. 淮南: 安徽理工大学, 2021.

    HUA Yuchang. Theoretical and experimental study on depth of cut of No. 45 steel by water jet cutting of premixed abrasives [D]. Huainan: Anhui University of Science and Technology, 2021.
    [16] 司鹄, 谢延明, 杨春和, 等. 磨料水射流作用下岩石损伤场的数值模拟 [J]. 岩土力学,2011,32(3):935-940. doi: 10.3969/j.issn.1000-7598.2011.03.048

    SI Hu, XIE Yanming, YANG Chunhe, et al. Numerical simulation of rock damage field under abrasive water jet [J]. Rock and Soil Mechanics,2011,32(3):935-940. doi: 10.3969/j.issn.1000-7598.2011.03.048
    [17] NQUVEN T, SHANMUGAM D K, WANG J. Effect of liquid properties on the stability of an abrasive waterjet [J]. International Journal of Machine Tools & Manufacture,2008(48):1138-1147. doi: 10.1016/j.ijmachtools.2008.01.009
    [18] LIU H, WANG A J, KELSON N, et al. A study of abrasive water jet characteristics by CFD simulation [J]. Journal of Materials Processing Technology,2004(153/154):488-493. doi: 10.1016/j.jmatprotec.2004.04.037
    [19] 张文超, 武美萍. 磨料水射流抛光45钢工艺参数优化 [J]. 机械设计与研究,2017,33(6):113-117. doi: 10.13952/j.cnki.jofmdr.2017.0254

    ZHANG Wenchao, WU Meiping. Optimization of process parameters of abrasive waterjet polishing 45 steel [J]. Mechanical Design and Research,2017,33(6):113-117. doi: 10.13952/j.cnki.jofmdr.2017.0254
    [20] 林晓东, 卢义玉, 汤积仁, 等. 前混合式磨料水射流磨料粒子加速过程数值模拟 [J]. 振动与冲击,2015,34(16):19-24. doi: 10.13465/j.cnki.jvs.2015.16.004

    LIN Xiaodong, LU Yiyu, TANG Jiren, et al. Numerical simulation of abrasive particle acceleration process of pre-hybrid abrasive waterjet [J]. Journal of Vibration and Shock,2015,34(16):19-24. doi: 10.13465/j.cnki.jvs.2015.16.004
    [21] 周新超, 马小晶, 廖翔云, 等. 磨料水射流冲击孔隙岩体的SPH模拟研究 [J]. 岩土工程学报,2022,44(4):731-739. doi: 10.11779/CJGE202204016

    ZHOU Xinchao, MA Xiaojing, LIAO Xiangyun, et al. SPH simulation study on impact of abrasive water jet on pore rock mass [J]. Chinese Journal of Geotechnical Engineering,2022,44(4):731-739. doi: 10.11779/CJGE202204016
    [22] 李福来, 荆正军, 马少华, 等. 磨料水射流加工材料去除机制及影响因素分析 [J]. 山东化工,2021,50(2):129-132. doi: 10.3969/j.issn.1008-021X.2021.02.046

    LI Fulai, JING Zhengjun, MA Shaohua, et al. Analysis of removal mechanism and influencing factors of abrasive water jet processing materials [J]. Shandong Chemical Industry,2021,50(2):129-132. doi: 10.3969/j.issn.1008-021X.2021.02.046
    [23] 何雪明, 陈泽华, 武美萍, 等. 基于磨料水射流的螺杆转子加工新方法研究 [J]. 中国机械工程,2016,27(19):2581-2588. doi: 10.3969/j.issn.1004-132X.2016.19.005

    HE Xueming, CHEN Zehua, WU Meiping, et al. Research on new method of screw rotor processing based on abrasive water jet [J]. China Mechanical Engineering,2016,27(19):2581-2588. doi: 10.3969/j.issn.1004-132X.2016.19.005
    [24] 卞达, 宋恩敏, 倪自丰, 等. 基于响应面法的单晶硅CMP抛光工艺参数优化 [J]. 金刚石与磨料磨具工程,2022,42(6):745-752. doi: 10.13394/j.cnki.jgszz.2022.0081

    BIAN Da, SONG Enmin, NI Zifeng, et al. Optimization of process parameters of single crystal silicon CMP polishing process based on response surface method [J]. Diamond & Abrasives Engineering,2022,42(6):745-752. doi: 10.13394/j.cnki.jgszz.2022.0081
    [25] MA X, WEN C. Optimization analysis of mechanical performance of copper stave with special-shaped tubes in the blast furnace bosh [J]. ISIJ International,2021,61(1):55-61. doi: 10.2355/isijinternational.ISIJINT-2019-799
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  34
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-03-28
  • 录用日期:  2024-04-18
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回