CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂轮种类及冷却方式对SiCf/SiC陶瓷基复合材料磨削质量的影响

王奔 唐家杰 楚闳迪 张棋

王奔, 唐家杰, 楚闳迪, 张棋. 砂轮种类及冷却方式对SiCf/SiC陶瓷基复合材料磨削质量的影响[J]. 金刚石与磨料磨具工程, 2025, 45(2): 163-175. doi: 10.13394/j.cnki.jgszz.2024.0008
引用本文: 王奔, 唐家杰, 楚闳迪, 张棋. 砂轮种类及冷却方式对SiCf/SiC陶瓷基复合材料磨削质量的影响[J]. 金刚石与磨料磨具工程, 2025, 45(2): 163-175. doi: 10.13394/j.cnki.jgszz.2024.0008
WANG Ben, TANG Jiajie, CHU Hongdi, ZHANG Qi. Effect of grinding wheel type and cooling method on grinding quality of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2025, 45(2): 163-175. doi: 10.13394/j.cnki.jgszz.2024.0008
Citation: WANG Ben, TANG Jiajie, CHU Hongdi, ZHANG Qi. Effect of grinding wheel type and cooling method on grinding quality of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2025, 45(2): 163-175. doi: 10.13394/j.cnki.jgszz.2024.0008

砂轮种类及冷却方式对SiCf/SiC陶瓷基复合材料磨削质量的影响

doi: 10.13394/j.cnki.jgszz.2024.0008
详细信息
    作者简介:

    王奔,男,1984年生,博士、教授。主要研究方向:复合材料、钛合金、高温合金等航空难加工材料的先进加工技术。E-mail:wangben211@163.com

  • 中图分类号: TG58; TG74; TQ164

Effect of grinding wheel type and cooling method on grinding quality of SiCf/SiC ceramic matrix composites

  • 摘要: SiCf/SiC陶瓷基复合材料由于其耐高温和高比强度的特性,已成为航空发动机用先进材料之一。然而,作为一种难加工的硬脆材料,提高其加工质量和效率是当前研究的关键问题。采用电镀和烧结金刚石砂轮,在有无冷却液的条件下进行正交磨削试验,以磨削力、工件表面粗糙度和砂轮磨损程度为评价指标,探究不同砂轮种类及冷却方式对SiCf/SiC陶瓷基复合材料磨削加工质量的影响。结果表明:采用烧结金刚石砂轮磨削加工复合材料可得到更好的表面质量和较低的磨削力,同时采用冷却液辅助磨削会降低工件表面粗糙度;由于电镀金刚石砂轮在受到较大磨削力时其金刚石磨粒更易出现成片剥落现象,其使用结果与烧结金刚石砂轮的相反,且电镀金刚石砂轮的磨损形式除磨粒损耗外还包括磨粒的烧伤、脱落等。当粗加工SiCf/SiC陶瓷基复合材料时,应在干式磨削条件下使用电镀金刚石砂轮,并选取高转速、低进给速度及较小磨削深度的磨削参数;当精加工SiCf/SiC陶瓷基复合材料时,应采用烧结金刚石砂轮,并采用水冷辅助方式来显著提高工件加工表面质量。

     

  • 图  1  SiCf/SiC陶瓷基复合材料的三维结构

    Figure  1.  3D structure of SiCf/SiC ceramic matrix composites

    图  2  不同种类的金刚石砂轮

    Figure  2.  Different types of diamond grinding wheels

    图  3  试验装置

    Figure  3.  Experimental setup

    图  4  干式磨削下2种砂轮的径向磨削力

    Figure  4.  Radial grinding forces of two types of grinding wheels under dry grinding

    图  5  干式磨削下2种砂轮的磨削力比

    Figure  5.  Grinding force ratios of two types of grinding wheels under dry grinding

    图  6  电镀砂轮不同冷却方式下的径向磨削力

    Figure  6.  Radial grinding forces of electroplated grinding wheel under different cooling methods

    图  7  烧结砂轮不同冷却方式下的径向磨削力

    Figure  7.  Radial grinding forces of sintered grinding wheel under different cooling methods

    图  8  复合材料表面粗糙度测量结果

    Figure  8.  Measurement results of surface roughness of composite materials

    图  9  不同种类砂轮及不同冷却方式下的表面粗糙度Sa综合对比

    Figure  9.  Comprehensive comparison of surface roughness Sa under different types of grinding wheels and different cooling methods

    图  10  干式磨削下主轴转速对表面粗糙度的影响

    Figure  10.  Influence of spindle speed on surface roughness under dry grinding

    图  11  干式磨削下进给速度对表面粗糙度的影响

    Figure  11.  Influence of feed rate on surface roughness in dry grinding

    图  12  干式磨削下磨削深度对表面粗糙度的影响

    Figure  12.  Influence of grinding depth on surface roughness in dry grinding

    图  13  水冷条件下主轴转速对表面粗糙度的影响

    Figure  13.  Influence of spindle speed on surface roughness under water cooling condition

    图  14  水冷条件下进给速度对表面粗糙度的影响

    Figure  14.  Influence of feed rate on surface roughness under water cooling condition

    图  15  水冷条件下磨削深度对表面粗糙度的影响

    Figure  15.  Influence of grinding depth on surface roughness under water cooling condition

    图  16  电镀金刚石砂轮中磨粒的平面磨损及面积

    Figure  16.  Planar wear and area of abrasive particles in electroplated diamond grinding wheels

    图  17  电镀金刚石砂轮磨削加工后的表面形貌及磨损现象

    Figure  17.  Surface morphology and wear phenomenon of electroplated diamond grinding wheel after grinding

    图  18  烧结金刚石砂轮中磨粒的平面磨损及面积

    Figure  18.  Plane wear and area of abrasive particles in sintered diamond grinding wheels

    图  19  烧结金刚石砂轮磨削加工后的表面形貌

    Figure  19.  Surface morphology of sintered diamond grinding wheel after grinding

    表  1  SiCf/SiC陶瓷基复合材料属性[24]

    Table  1.   Properties of SiCf/SiC ceramic matrix composites[24]

    材料属性 数值
    密度 ρ / (g·cm−3) 2.26 ± 0.03
    气孔率 φ / % 10 ± 0.8
    纤维直径 D / µm ≈12
    拉伸强度 σ1 / MPa 271.4 ± 29.0
    弯曲强度 σ2 / MPa 443.8 ± 26.6
    层间剪切强度 σ3 / MPa 63.2 ± 9.9
    压缩强度 σ4 / MPa 454.0 ± 18.2
    断裂韧性 KIC / (MPa·m1/2) 24.1 ± 2.3
    下载: 导出CSV

    表  2  试验参数表

    Table  2.   Test parameter table

    组号 主轴转速
    n / (r·min−1)
    进给速度
    vf / (mm·min−1)
    磨削深度
    ap / mm
    1 3 200 35 0.2
    2 3 200 40 0.4
    3 3 200 45 0.6
    4 3 600 35 0.4
    5 3 600 40 0.6
    6 3 600 45 0.2
    7 4 000 35 0.6
    8 4 000 40 0.2
    9 4 000 45 0.4
    下载: 导出CSV

    表  3  不同砂轮不同冷却方式下的Sa

    Table  3.   Sa values under different grinding wheels and cooling methods

    组号 表面粗糙度 Sa / μm
    电镀−干式 电镀−水冷 烧结−干式 烧结−水冷
    1 3.923 7.375 2.405 1.545
    2 2.652 6.046 2.235 1.165
    3 1.753 5.652 1.413 1.045
    4 2.635 3.672 2.567 1.429
    5 3.036 6.533 2.902 2.026
    6 5.196 7.855 3.119 2.919
    7 2.312 5.299 1.761 3.556
    8 2.624 5.441 2.347 3.982
    9 2.843 8.862 2.647 6.485
    下载: 导出CSV
  • [1] 姜卓钰, 赵春玲, 束小文, 等. 进给速度对MI工艺制备SiCf/SiC复合材料加工损伤的影响 [J]. 宇航材料工艺,2022,52(4):66-70. doi: 10.12044/j.issn.1007-2330.2022.04.012

    JIANG Zhuoyu, ZHAO Chunling, SHU Xiaowen, et al. Effect of feed rate on machining damage of SiCf/SiC composites by MI process [J]. Aerospace Materials & Technology,2022,52(4):66-70. doi: 10.12044/j.issn.1007-2330.2022.04.012
    [2] 刘虎, 杨金华, 周怡然, 等. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展 [J]. 材料工程,2018,46(11):1-12. doi: 10.11868/j.issn.1001-4381.2018.000503

    LIU Hu, YANG Jinhua, ZHOU Yiran, et al. Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines [J]. Journal of Material Engineering,2018,46(11):1-12. doi: 10.11868/j.issn.1001-4381.2018.000503
    [3] BIE W B, CHEN F, WANG X B, et al. Longitudinal-torsional coupled rotary ultrasonic machining end surface grinding of SiCf/SiC composites: A mechanical model of cutting force [J]. The International Journal of Advanced Manufacturing Technology,2023,129(3/4):1227-1248. doi: 10.1007/s00170-023-12360-7
    [4] KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites [J]. Journal of Nuclear Materials,2014,455(1):387-397. doi: 10.1016/j.jnucmat.2014.06.003
    [5] HOCHENG H, GUU Y, TAI N. The feasibility analysis of electrical-discharge machining of carbon-carbon composites [J]. Material and Manufacturing Process,1998,13(1):117-132. doi: 10.1080/10426919808935223
    [6] SADAGOPAN P, MOULIPRASANTH B. Investigation on the influence of different types of dielectrics in electrical discharge machining [J]. The International Journal of Advanced Manufacturing Technology,2017,92(1/4):277-291. doi: 10.1007/s00170-017-0039-1
    [7] TUERSLEY I, HOULT T, PASHBY I. The processing of SiC/SiC ceramic matrix composites using a pulsed Nd–YAG laser: Part I: Optimisation of pulse parameters [J]. Journal of materials science,1998,33:955-961. doi: 10.1023/A:1004355626829
    [8] LIU Y C, WU C W, HUANG Y H, et al. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation [J]. Optics and Lasers in Engineering,2017,88:91-101. doi: 10.1016/j.optlaseng.2016.08.001
    [9] 王学智, 丛铭, 刘清遥, 等. SiCf/SiC复合材料超声辅助磨削试验研究 [J]. 工具技术,2023,57(3):9-14. doi: 10.3969/j.issn.1000-7008.2023.03.002

    WANG Xuezhi, CONG Ming, LIU Qingyao, et al. Experimental study on ultrasonic assisted grinding of SiCf/SiC composites [J]. Tool Engineering,2023,57(3):9-14. doi: 10.3969/j.issn.1000-7008.2023.03.002
    [10] LIU Y, LIU Z, WANG X, et al. Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites [J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 2003-2014. doi: 10.1007/s00170-020-06355-x
    [11] 袁芳, 徐亮, 赵国龙, 等. 纤维增强SiC陶瓷基复合材料加工技术研究进展 [J]. 宇航材料工艺,2022,52(2):92-108. doi: 10.12044/j.issn.1007-2330.2022.02.009

    YUAN Fang, XU Liang, ZHAO Guolong, et al. Research progress on the machining technology of fiber reinforced silicon carbide matrix composite [J]. Aerospace Materials & Technology,2022,52(2):92-108. doi: 10.12044/j.issn.1007-2330.2022.02.009
    [12] 张修峰, 邵国栋, 刘传成, 等. 碳化硅陶瓷基复合材料常用的特种加工技术: 综述 [J]. 机械工程学报,2023,59(1):199-218. doi: 10.3901/JME.2023.01.199

    ZHANG Xiufeng, SHAO Guodong, LIU Chuancheng, et al. Special processing techniques commonly used for silicon carbide ceramic-based composites: review [J]. Journal of Mechanical Engineering,2023,59(1):199-218. doi: 10.3901/JME.2023.01.199
    [13] LI Y, GE X, WANG H, et al. Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests [J]. Ceramics International,2019,45(4):4729-4738. doi: 10.1016/j.ceramint.2018.11.165
    [14] YIN J, XU J, DING W, et al. Effects of grinding speed on the material removal mechanism in single grain grinding of SiCf/SiC ceramic matrix composite [J]. Ceramics International,2021,47(9):12795-12802. doi: 10.1016/j.ceramint.2021.01.140
    [15] 张立峰, 王梓旭, 张旺通, 等. 单向陶瓷基复合材料C/SiC变角度顺逆磨的对比试验 [J]. 中国机械工程,2024,35(2):235-243. doi: 10.3969/j.issn.1004-132X.2024.02.007

    ZHANG Lifeng, WANG Zixu, ZHANG Wangtong, et al. Contrastive experiments on up and down grinding of unidirectional ceramic matrix composite C/SiC with variable angle [J]. China Mechanical Engineering,2024,35(2):235-243. doi: 10.3969/j.issn.1004-132X.2024.02.007
    [16] GONG Y, QU S, YANG Y, et al. Some observations in grinding SiC and silicon carbide ceramic matrix composite material [J]. The International Journal of Advanced Manufacturing Technology,2019,103(5):3175-3186. doi: 10.1007/s00170-019-03735-w
    [17] 黄博, 汪文虎, 蒋睿嵩, 等. SiCf/SiC陶瓷基复合材料超声振动辅助切削试验研究 [J]. 电加工与模具,2021(1):55-59. doi: 10.3969/j.issn.1009-279X.2021.01.011

    HUANG Bo, WANG Wenhu, JIANG Ruisong, et al. Study on ultrasonic vibration-assisted cutting for SiCf/SiC ceramic matrix composites [J]. Electromachining & Mould,2021(1):55-59. doi: 10.3969/j.issn.1009-279X.2021.01.011
    [18] TASHIRO T, FUJIWARA J, TAKENAKA Y. Grinding of C/C-SiC composite in dry method: Towards synethis of micro-/nano- systems [C]. London: Springer,2007.
    [19] 黄梁. 面向SiCf/SiC磨削的青铜基金刚石砂轮微波烧结制备及其性能研究 [D]. 长沙: 湖南大学, 2022.

    HAUNG Liang. Research on microwave sintering preparation and properties of bronze-based diamond grinding wheels for SiCf/SiC grinding [D]. Changsha: Hunan University, 2022.
    [20] CHEN B, XU H, GUO Y, et al. Experimental research on wear mechanism of diamond wheels for grinding Cf/SiC composites grooves [J]. Journal of Materials Research and Technology,2023,27:2382-2398. doi: 10.1016/j.jmrt.2023.10.085
    [21] LYU Y, YU H, WANG J, et al. Improved performance of electroplated grinding wheels using a new method of controlled grain size sorting [J]. Journal of Manufacturing Processes,2017,30:336-342. doi: 10.1016/j.jmapro.2017.10.004
    [22] 李胜男, 龙伟民, 贾连辉, 等. 钎焊及扩散焊在金刚石工具制造中的发展 [J]. 电焊机,2022,52(8):20-28. doi: 10.7512/j.issn.1001-2303.2022.08.03

    LI Shengnan, LONG Weimin, JIA Lianhui, et al. Development of brazing and diffusion bonding in manufacturing diamond tools [J]. Electric Welding Machine,2022,52(8):20-28. doi: 10.7512/j.issn.1001-2303.2022.08.03
    [23] 滕世国, 张松辉, 张晓红, 等. 不同结构化金刚石砂轮磨削碳化硅陶瓷的试验研究 [J]. 工具技术,2021,55(8):38-43. doi: 10.3969/j.issn.1000-7008.2021.08.005

    TENG Shiguo, ZHANG Songhui, ZHANG Xiaohong, et al. Experimental study on grinding SiC ceramics with different structured diamond wheels [J]. Tool Engineering,2021,55(8):38-43. doi: 10.3969/j.issn.1000-7008.2021.08.005
    [24] ZHANG Q, WANG B, SONG C, et al. Processing strategy of SiCf/SiC composites during single grain scratching under minimum quantity lubrication [J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-19. doi: 10.1007/s00170-023-11843-x
    [25] 康仁科, 赵凡, 鲍岩, 等. 超声辅助磨削SiCf/SiC陶瓷基复合材料 [J]. 金刚石与磨料磨具工程,2019,39(4):85-91. doi: 10.13394/j.cnki.jgszz.2019.4.0015

    KANG Renke, ZHAO Fan, BAO Yan, et al. Ultrasonic assisted grinding of SiCf / SiC composites [J]. Diamond & Abrasives Engineering,2019,39(4):85-91. doi: 10.13394/j.cnki.jgszz.2019.4.0015
    [26] ZHANG M, XIA Z, SHAN C, et al. Analytical model of grinding force for ultrasonic-assisted grinding of Cf/SiC composites [J]. The International Journal of Advanced Manufacturing Technology,2023,126(5):2037-2052. doi: 10.1007/s00170-023-11257-9
    [27] 李林龙, 吴彼, 薛伟海, 等. 稀土对GCr15轴承钢滚动接触疲劳中微点蚀的影响 [J]. 摩擦学学报,2023,43(9):995-1005. doi: 10.16078/j.tribology.2022155

    LI Linlong, WU Bi, XUE Weihai, et al. Effect of rare earth on the micro-pitting behavior in rolling contact fatigue of GCr15 bearing steel [J]. Tribology,2023,43(9):995-1005. doi: 10.16078/j.tribology.2022155
    [28] YAN H P, DENG F, QIN Z Y, et al. Effects of grinding parameters on the processing temperature, crack propagation and residual stress in silicon nitride ceramics [J]. Micromachines,2023,14(3):666. doi: 10.3390/mi14030666
    [29] YU J W, CHEN T, SHANG Z T, et al. Experimental investigation on high-speed grinding of 40Cr steel with vitrified CBN grinding wheel [J]. Advanced Materials Research,2010,984(126/128):154-158. doi: 10.4028/www.scientific.net/AMR.126-128.154
    [30] TAWAKOLI T, HADAD M J, SADEGHI M H, et al. An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding [J]. International Journal of Machine Tools and Manufacture,2009,49(12):924-932. doi: 10.1016/j.ijmachtools.2009.06.015
    [31] PAN J, ZHANG X, YAN Q, et al. Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel [J]. The International Journal of Advanced Manufacturing Technology,2017,89(1/4):619-627. doi: 10.1007/s00170-016-9095-1
    [32] XIA Y, DENG S, WU M, et al. Research on the grinding performance of an electroplated coarse-grained diamond grinding wheel by dressing [J]. Machines,2024,12(3):155. doi: 10.3390/machines12030155
    [33] YE Z, WEN X, WAN W, et al. Precision grinding technology of silicon carbide (SiC) ceramics by longitudinal torsional ultrasonic vibrations [J]. Material,2023,16(16):5572. doi: 10.3390/ma16165572
    [34] MARINESCU I D, HITCHINER M P, UHLMANN E, et al. Handbook of machining with grinding wheels [M]. Boca Raton: CRC Press, 2006.
    [35] MALKIN S, GUO C. Grinding technology: theory and application of machining with abrasives [M]. Beijing: Industrial Press Inc., 2008.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  38
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-05-16
  • 录用日期:  2024-06-17
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回