CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百叶轮抛光TC4温度仿真与试验

王丽博 鲜超 辛红敏

王丽博, 鲜超, 辛红敏. 百叶轮抛光TC4温度仿真与试验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 396-407. doi: 10.13394/j.cnki.jgszz.2024.0019
引用本文: 王丽博, 鲜超, 辛红敏. 百叶轮抛光TC4温度仿真与试验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 396-407. doi: 10.13394/j.cnki.jgszz.2024.0019
WANG Libo, XIAN Chao, XIN Hongmin. Temperature simulation and experimental for polishing TC4 with abrasive cloth wheel[J]. Diamond & Abrasives Engineering, 2025, 45(3): 396-407. doi: 10.13394/j.cnki.jgszz.2024.0019
Citation: WANG Libo, XIAN Chao, XIN Hongmin. Temperature simulation and experimental for polishing TC4 with abrasive cloth wheel[J]. Diamond & Abrasives Engineering, 2025, 45(3): 396-407. doi: 10.13394/j.cnki.jgszz.2024.0019

百叶轮抛光TC4温度仿真与试验

doi: 10.13394/j.cnki.jgszz.2024.0019
基金项目: 国家科技重大专项资助项目(2015ZX04001003);国家自然科学基金面上项目(51675439)。
详细信息
    作者简介:

    鲜超,男,1987年生,博士、讲师、硕士研究生导师。主要研究方向:整体叶盘加工技术。E-mail:xianchao1994@163.com

    辛红敏,女,1979年生,博士、教授、硕士研究生导师。主要研究方向:航空航天复杂结构件数控智能制造装备及工艺、冷喷涂增材制造、抗疲劳制造技术、物联网与智能交通技术。 E-mail:xhm0330@163.com

    通讯作者:

    王丽博,女,1984年生,硕士。主要研究方向:机械加工、控制技术。 E-mail:22995305@qq.com

  • 中图分类号: TG580.14;V232.4

Temperature simulation and experimental for polishing TC4 with abrasive cloth wheel

  • 摘要: 抛光温度是影响零件表面性能的重要因素,尤其会对零件表面残余应力的形成产生关键影响。通过试验测量百叶轮抛光TC4试件的抛光温度,基于矩形移动热源模型建立抛光温度的理论计算模型,并通过ANSYS仿真抛光TC4的表面温度。结果表明:抛光温度随主轴转速、百叶轮压缩量的增大而升高,随进给速度、磨粒目数的增大而降低。柔性抛光温度要显著低于刚性抛光温度,4个工艺参数中百叶轮压缩量的主效应最大,对抛光温度的影响程度最大。抛光温度梯度以正在加工的接触区域向已加工区域逐渐递减,抛光热效应对未加工区域影响较小。通过对比抛光温度测量结果、计算结果和仿真结果,发现仿真值和测量值的偏差率均 < 22%,计算值和测量值的偏差率均 < 17%。

     

  • 图  1  百叶轮实物图

    Figure  1.  Physical picture of abrasive cloth wheels

    图  2  百叶轮柔性抛光原理

    Figure  2.  Principle of flexible polishing with abrasive cloth wheel

    图  3  抛光力和抛光温度测量原理

    Figure  3.  Principle of measuring polishing force and polishing temperature

    图  4  现场试验图

    Figure  4.  Field test

    图  5  热成像图片

    Figure  5.  Thermal image

    图  6  矩形热源移动模型

    Figure  6.  Moving rectangular heat source model

    图  7  抛光过程

    Figure  7.  Polishing process

    图  8  抛光力信号

    Figure  8.  Polishing force signal

    图  9  抛光温度仿真流程

    Figure  9.  Polishing temperature simulation process

    图  10  ANSYS仿真的磨削表面温度场

    Figure  10.  Simulated results of grinding surface temperature field by ANSYS

    图  11  表面温度随位置变化曲线

    Figure  11.  Variation curve of surface temperature with position

    图  12  温度的计算值、仿真值和测量值对比

    Figure  12.  Comparison for calculated, simulated, and measured values of temperature

    图  13  工艺参数对抛光温度的影响规律

    Figure  13.  Influence law of process parameters on polishing temperature

    图  14  主效应分析

    Figure  14.  Main effect analysis

    表  1  特殊函数i(p,ξ)的值

    Table  1.   Values of special function i(p,ξ)

    p i(p,1)(p < 0) p i(p,1)(p > 0)
    −0.05 0.199 0.05 0.189
    −0.10 0.343 0.10 0.300
    −0.20 0.576 0.20 0.472
    −0.30 0.777 0.30 0.595
    −0.40 0.955 0.40 0.683
    −0.50 1.113 0.50 0.748
    −0.60 1.252 0.60 0.749
    −0.70 1.381 0.80 0.857
    −0.80 1.504 1.00 0.896
    −0.90 1.624 1.20 0.914
    −1.00 1.739 1.40 0.932
    −1.20 1.957 1.60 0.944
    −1.40 2.160 1.80 0.947
    −1.60 2.347 2.00 0.955
    −1.80 2.528 2.20 0.958
    −2.00 2.703 2.40 0.960
    −2.20 2.871 2.60 0.961
    −2.40 3.032 2.80 0.962
    −2.60 3.188 3.00 0.962
    −2.80 3.337 3.50 0.963
    −3.00 3.481 4.00 0.963
    −3.50 3.824 4.50 0.963
    −4.00 4.154 5.00 0.963
    −4.50 4.446 6.00 0.963
    −5.00 4.749 7.00 0.963
    −5.50 5.025 8.00 0.963
    −6.00 5.290 9.00 0.963
    −7.00 5.772
    −8.00 6.231
    −9.00 6.661
    −10.0 7.068
    −12.0 7.825
    −14.0 8.523
    −16.0 9.171
    −18.0 9.780
    −20.0 10.350
    −22.0 10.910
    下载: 导出CSV

    表  2  不同目数百叶轮对应的筛孔直径

    Table  2.   Sieve diameters corresponding to abrasive cloth wheels with different number of abrasive particles

    百叶轮目数 P 筛孔直径 d / μm
    240 61
    320 44
    400 38
    600 23
    1 000 13
    下载: 导出CSV

    表  3  TC4在20 ℃时物理性能参数[38]

    Table  3.   Physical performance parameters of TC4 at 20 ℃[38]

    性能参数数值
    密度 ρ / (kg·m−3)4 450
    比热容 c / (J·kg−1·℃−1)612
    热导率 λ / (W·m−1·K−1)5.44
    下载: 导出CSV

    表  4  E点温度的计算值、仿真值和测量值结果

    Table  4.   Calculation, simulation, and measurement results of temperature at point E

    序号 主轴转速
    n / (r·min−1)
    百叶轮压缩量
    ap / mm
    进给速度
    vw / (mm·min−1)
    百叶轮磨粒目数
    P
    抛光力
    Ft / N
    测量值
    θEm / ℃
    仿真值
    θEs / ℃
    计算值
    θEc / ℃
    1 4 000 1.2 200 180 6.38 44.87 45.22 46.76
    2 8 000 1.2 200 180 11.78 53.45 49.96 51.48
    3 6 000 0.8 200 180 1.90 37.66 40.89 42.39
    4 6 000 1.6 200 180 55.39 96.36 78.55 82.78
    5 6 000 1.2 100 180 7.27 51.71 49.47 47.67
    6 6 000 1.2 300 180 12.46 35.72 38.12 36.55
    7 6 000 1.2 200 120 30.55 56.95 50.64 52.83
    8 6 000 1.2 200 320 8.83 44.22 45.15 46.74
    9 6 000 1.2 200 180 9.46 49.85 49.25 50.61
    下载: 导出CSV
  • [1] JAEGER J C. Moving sources of heat and the temperature at sliding contacts [J]. Journal and Proceedings of the Royal Society of New South Wales,1943,76(3):203-224. doi: 10.5962/p.360338
    [2] 贝季瑶. 磨削温度的分析与研究 [J]. 上海交通大学学报,1964(3):55-71. doi: 10.16183/j.cnki.jsjtu.1964.03.005

    BEI Jiyao. Analysis and research on grinding temperature [J]. Journal of Shanghai Jiao Tong University,1964(3):55-71. doi: 10.16183/j.cnki.jsjtu.1964.03.005
    [3] 张磊. 单程平面磨削淬硬技术的理论分析和试验研究 [D]. 济南: 山东大学, 2006.

    ZHANG Lei. Theoretical analysis and experimental study on hardening technology of single-pass plane grinding [D]. Jinan: Shandong University, 2006.
    [4] 金滩. 高效深切磨削技术的基础研究[D]. 沈阳: 东北大学, 1999.

    JIN Tan. Fundamental research on high efficiency deep grinding technology [D]. Shenyang: Northeastern University, 1999.
    [5] JIN T, CAI G Q. Analytical thermal models of oblique moving heat source for deep grinding and cutting [J]. Journal of Manufacturing Science and Engineering,2001,123(2):185-190. doi: 10.1115/1.1343458
    [6] JIN T, ROWE W B, MCCORMACK D. Temperatures in deep grinding of finite workpieces [J]. International Journal of Machine Tools and Manufacture,2002,42(1):53-59. doi: 10.1016/S0890-6955(01)00094-3
    [7] LIU M Z, LI C H, ZHANG Y B, et al. Analysis of grain tribology and improved grinding temperature model based on discrete heat source [J]. Tribology International,2023,180:108196. doi: 10.1016/j.triboint.2022.108196
    [8] YANG S Y, CHEN W F, NONG S, et al. Temperature field modelling in the form grinding of involute gear based on high-order function moving heat source [J]. Journal of Manufacturing Processes,2022,81:1028-1039. doi: 10.1016/j.jmapro.2022.07.014
    [9] GRIMMERT A, PACHNEK F, WIEDERKEHR P. Temperature modeling of creep-feed grinding processes for nickel-based superalloys with variable heat flux distribution [J]. CIRP Journal of Manufacturing Science and Technology,2023,41:477-489. doi: 10.1016/j.cirpj.2023.01.011
    [10] LAN S L, JIAO F. Modeling of heat source in grinding zone and numerical simulation for grinding temperature field [J]. The International Journal of Advanced Manufacturing Technology,2019,103(5):3077-3086. doi: 10.1007/s00170-019-03662-w
    [11] 蒋培军. 基于温度匹配法的平面磨削3D有限元仿真及试验 [J]. 金刚石与磨料磨具工程,2020,40(5):96-101. doi: 10.13394/j.cnki.jgszz.2020.05.0017

    JIANG Peijun. Three dimensional simulation and experiment of plane grinding temperature field based on temperature matching method [J]. Diamond & Abrasives Engineering,2020,40(5):96-101. doi: 10.13394/j.cnki.jgszz.2020.05.0017
    [12] 张宇. cBN砂轮对GCr15钢的磨削硬化试验与仿真研究[D]. 太原: 太原理工大学, 2020.

    ZHANG Yu. The experimental study and simulation ongrind-hardening of GCr15 steel by cBN grinding wheel [D]. Taiyuan: Taiyuan University of Technology, 2020.
    [13] 王长清, 郑子琦, 郑勇, 等. 磨粒形状对轴类零件磨削温度影响的仿真分析 [J]. 组合机床与自动化加工技术,2022(3):141-144. doi: 10.13462/j.cnki.mmtamt.2022.03.034

    WANG Changqing, ZHENG Ziqi, ZHENG Yong, et al. Simulation analysis of influence of abrasive shape on grinding temperature of shaft part [J]. Modular Machine Tool & Automatic Manufacturing Technique,2022(3):141-144. doi: 10.13462/j.cnki.mmtamt.2022.03.034
    [14] 孙为钊. 基于有限元和卷积神经网络的磨削温度理论分析及数值仿真 [D]. 上海: 上海工程技术大学, 2020.

    SUN Weizhao. Theoretical analysis and numerical simulation of grinding temperature based on finite element and convolutional neural network [D]. Shanghai: Shanghai University of Engineering Science, 2020.
    [15] YANG M, LI C H, ZHANG Y B, et al. Research on microscale skull grinding temperature field under different cooling conditions [J]. Applied Thermal Engineering,2017,126:525-537. doi: 10.1016/j.applthermaleng.2017.07.183
    [16] HANDA D, KUMAR S, SURENDRAN S B T, et al. Simulation of intermittent grinding for Ti-6Al-4V with segmented wheel [J]. Materials Today: Proceedings,2021,44:2537-2542. doi: 10.1016/j.matpr.2020.12.626
    [17] 尹国强, 巩亚东, 李宥玮, 等. 新型点磨削砂轮磨削温度仿真实验 [J]. 东北大学学报(自然科学版),2019,40(3):392-397. doi: 10.12068/j.issn.1005-3026.2019.03.017

    YIN Guoqiang, GONG Yadong, LI Youwei, et al. Simulation experiment of grinding temperature for novel point grinding wheel [J]. Journal of Northeastern University (Natural Science),2019,40(3):392-397. doi: 10.12068/j.issn.1005-3026.2019.03.017
    [18] 李厦, 王锴霖. 超声振动辅助缓进给磨削温度场仿真与试验分析 [J]. 表面技术,2018,47(7):265-269. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.040

    LI Sha, WANG Kailin. Simulation and experimental analysis of ultrasonic vibration assisted creep feed grinding temperature field [J]. Surface Technology,2018,47(7):265-269. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.040
    [19] 朱贵升. 切向超声辅助磨削热力耦合特性研究[D]. 天津: 天津科技大学, 2022.

    ZHU Guisheng. Study on thermal-mechanical couplingcharaceristics of tangential ultrasonicssisted grinding [D]. Tianjin: Tianjin University of Science and Technology, 2022.
    [20] 王晓旭. TC4钛合金纵扭超声磨削CBN砂轮磨损机理及其试验研究 [D]. 焦作: 河南理工大学, 2022.

    WANG Xiaoxu. Wear mechanism and experimental study of CBN grinding wheel in longitudinal and torsional ultrasonic grinding of TC4 titanium alloy [D]. Jiaozuo: Henan Polytechnic University, 2022.
    [21] BABBAR A, JAIN V, GUPTA D, et al. Finite element simulation and integration of CEM43 ℃ and Arrhenius models for ultrasonic-assisted skull bone grinding: A thermal dose model [J]. Medical Engineering & Physics,2021,90:9-22. doi: 10.1016/j.medengphy.2021.01.008
    [22] 王晨晨. 骨骼磨削温度的仿真预测及实验研究 [D]. 青岛: 山东科技大学, 2021.

    WANG Chenchen. Research on the prediction based on simulation results and experimental of bone grinding temperature [D]. Qingdao: Shandong University of Science and Technology, 2021.
    [23] WAN L L, LI L, DENG Z H, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics [J]. Journal of Manufacturing Processes,2019,47:41-51. doi: 10.1016/j.jmapro.2019.09.024
    [24] 李征, 丁文锋, 周欢, 等. 基于混合材料模型的颗粒增强钛基复材高速磨削温度研究 [J]. 机械工程学报,2019,55(21):186-198. doi: 10.3901/JME.2019.21.186

    LI Zheng, DING Wenfeng, ZHOU Huan, et al. Grinding temperature of particulate reinforced titanium matrix composites in high-speed grinding based on multi-material model [J]. Journal of Mechanical Engineering,2019,55(21):186-198. doi: 10.3901/JME.2019.21.186
    [25] 刘军, 范宝朋, 陈燕, 等. 超声振动磨削CFRP温度场的有限元仿真 [J]. 机械科学与技术,2020,39(6):821-828. doi: 10.13433/j.cnki.1003-8728.20190217

    LIU Jun, FAN Baopeng, CHEN Yan, et al. FEM simulation of temperature field in ultrasonic vibration grinding of CFRP [J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(6):821-828. doi: 10.13433/j.cnki.1003-8728.20190217
    [26] SU J X, KE Q X, DENG X Z, et al. Numerical simulation and experimental analysis of temperature field of gear form grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,97(5):2351-2367. doi: 10.1007/s00170-018-2079-6
    [27] GUO H, WANG X Y, ZHAO N, et al. Simulation analysis and experiment of instantaneous temperature field for grinding face gear with a grinding worm [J]. The International Journal of Advanced Manufacturing Technology,2022,120(7):4989-5001. doi: 10.1007/s00170-022-09036-z
    [28] GUO Z F, YI J, HU X P, et al. Heat flux distribution model and transient temperature field analysis in grinding of helical raceway [J]. The International Journal of Advanced Manufacturing Technology,2022,121(9):6497-6506. doi: 10.1007/s00170-022-09736-6
    [29] 胡浩. 镍基高温合金螺纹成形磨削温度场仿真与实验研究[D]. 长沙: 湖南大学, 2022.

    HU Hao. Simulation and experimental study of temperature field in thread forming grinding of nickel-based superalloy [D]. Changsha: Hunan University, 2022.
    [30] KUANG W J, MIAO Q, DING W F, et al. Residual stresses of turbine blade root produced by creep-feed profile grinding: Three-dimensional simulation based on workpiece–grain interaction and experimental verification [J]. Journal of Manufacturing Processes,2021,62:67-79. doi: 10.1016/j.jmapro.2020.11.045
    [31] CHEN H, ZHAO J, DAI Y X, et al. Simulation of 3D grinding temperature field by using an improved finite difference method [J]. The International Journal of Advanced Manufacturing Technology,2020,108(11):3871-3884. doi: 10.1007/s00170-020-05513-5
    [32] 王崇. 工程陶瓷高速磨削温度的有限元仿真分析 [D]. 长沙: 湖南大学, 2021.

    WANG Chong. Finite element simulation analysis of high-speed grinding temperature of engineering ceramics [D]. Changsha: Hunan University, 2021.
    [33] 赵玲刚. 氮化硅陶瓷磨削温度与表面变质层的仿真与实验 [J]. 机械与电子,2021,39(10):9-14. doi: 10.3969/j.issn.1001-2257.2021.10.002

    ZHAO Linggang. Simulation and experiment of grinding temperature and surface modification layer of silicon nitride ceramics [J]. Machinery & Electronics,2021,39(10):9-14. doi: 10.3969/j.issn.1001-2257.2021.10.002
    [34] 陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010.

    LU Zifeng. Calibration and the measurement error analysis of infrared imaging system for temperature measurement [D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optical Precision Machinery and Physics), 2010.
    [35] 任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011.

    REN Jingxin, HUA Dingan. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011.
    [36] ROWE W B, BLACK S C E, MILLS B, et al. Grinding temperatures and energy partitioning [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences,1997,453(1960):1083-1104. doi: 10.1098/rspa.1997.0061
    [37] 鲜超, 史耀耀, 蔺小军, 等. 百叶轮抛光TC4的接触弧长试验研究 [J]. 计算机集成制造系统,2020,26(5):1218-1232. doi: 10.13196/j.cims.2020.05.008

    XIAN Chao, SHI Yaoyao, LIN Xiaojun, et al. Experimental study on contact arc length of polishing TC4 with abrasive cloth wheel [J]. Computer Integrated Manufacturing Systems,2020,26(5):1218-1232. doi: 10.13196/j.cims.2020.05.008
    [38] 宝鸡旭隆有色金属有限公司. 钛合金TC4性能介绍[EB/OL]. (2022-12-07)[2024-04-18]. https://www.sxxlti.com/titanium-rods/194.html.

    Baoji Xulong Nonferrous Metals Co., Ltd. Introduction to the performance of titanium alloy TC4 [EB/OL]. (2022-12-07)[2024-04-18]. https://www.sxxlti.com/titanium-rods/194.html.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  259
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-04-29
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-05-24
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回