CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工神经网络的金刚石微粉化学镀镍层性能预测

方莉俐 刘韩 姜羽飞

方莉俐, 刘韩, 姜羽飞. 基于人工神经网络的金刚石微粉化学镀镍层性能预测[J]. 金刚石与磨料磨具工程, 2025, 45(2): 197-204. doi: 10.13394/j.cnki.jgszz.2024.0042
引用本文: 方莉俐, 刘韩, 姜羽飞. 基于人工神经网络的金刚石微粉化学镀镍层性能预测[J]. 金刚石与磨料磨具工程, 2025, 45(2): 197-204. doi: 10.13394/j.cnki.jgszz.2024.0042
FANG Lili, LIU Han, JIANG Yufei. Prediction of properties of electroless nickel plating with diamond powder based on artificial neural network[J]. Diamond & Abrasives Engineering, 2025, 45(2): 197-204. doi: 10.13394/j.cnki.jgszz.2024.0042
Citation: FANG Lili, LIU Han, JIANG Yufei. Prediction of properties of electroless nickel plating with diamond powder based on artificial neural network[J]. Diamond & Abrasives Engineering, 2025, 45(2): 197-204. doi: 10.13394/j.cnki.jgszz.2024.0042

基于人工神经网络的金刚石微粉化学镀镍层性能预测

doi: 10.13394/j.cnki.jgszz.2024.0042
基金项目: 2021 年河南省重点研发与推广专项(212102210488)。
详细信息
    作者简介:

    方莉俐,女,1965年生,博士、教授。主要研究方向:薄膜材料和薄膜物理、金刚石及其制品等。E-mail:hnzzfll@126.com

  • 中图分类号: TQ164

Prediction of properties of electroless nickel plating with diamond powder based on artificial neural network

  • 摘要: 用化学镀方法在M1/2、M6/12、M20/30金刚石微粉表面镀镍,并用人工神经网络预测金刚石颗粒粒径、次亚磷酸钠浓度、镀液温度、镀液pH值等化学镀工艺参数,对镀层沉积速率、镀层密度、镀层耐腐蚀性等镀层性能的影响。结果表明:构建的BP神经网络模型和GRNN模型,经过样本数据训练学习后适用于金刚石微粉化学镀镍层性能的预测;训练完成的BP神经网络和GRNN预测值与实际样品测量值相对误差绝对值的平均值分别为9.14%和5.07%,两者都有较好的预测效果;且在金刚石微粉化学镀镍层性能预测中,GRNN的预测性能优于BP神经网络的预测性能。

     

  • 图  1  BP神经网络算法流程图

    Figure  1.  BP neural network algorithm flowchart

    图  2  GRNN算法流程图[19]

    Figure  2.  GRNN algorithm flowchart[19]

    图  3  BP神经网络结构

    Figure  3.  BP neural network structure

    图  4  样本的BP神经网络训练结果

    Figure  4.  Training results of samples using BP neural network

    图  5  GRNN结构

    Figure  5.  GRNN structure

    图  6  GRNN中光滑因子寻优

    Figure  6.  Optimization of smoothing factor in GRNN

    图  7  2种神经网络预测结果的相对误差绝对值对比

    Figure  7.  Comparison of relative error absolute values between two neural network prediction results

    表  1  化学镀实验工艺参数的因素和水平

    Table  1.   Factors and levels of experimental process parameters for chemical plating

    水平 因素
    次亚磷酸钠浓度
    ρ1 / (g·L−1)
    镀液pH值 镀液温度
    θ / ℃
    1 25.0 3 30
    2 27.5 5 45
    3 30.0 7 60
    4 32.5 9 75
    5 35.0 11 90
    下载: 导出CSV

    表  2  训练样本

    Table  2.   Training samples

    组号 输入值 输出值
    粒度标记 次亚磷酸钠浓度
    ρ1 / (g·L−1)
    镀液pH值 镀液温度
    θ / ℃
    镀层沉积速率
    v1 / (g·h−1)
    镀层密度
    ρ2 / (g·cm−3)
    镀层耐腐蚀性能
    m / g
    1 M20/30 25.0 3 30 0.0500 0.5784 0.0420
    2 M20/30 25.0 5 60 0.2500 0.6864 0.0733
    3 M20/30 25.0 7 90 1.0100 0.1791 0.3073
    4 M20/30 25.0 9 45 0.3800 0.2220 0.1658
    5 M20/30 25.0 11 75 0.6600 4.5814 0.2541
    36 M6/12 30.0 3 75 0.3500 1.8224 0.0660
    37 M6/12 30.0 5 30 0.1200 2.8382 0.0373
    38 M6/12 30.0 7 60 0.5200 0.2157 0.3646
    39 M6/12 30.0 9 90 0.5400 0.7598 0.1465
    40 M6/12 30.0 11 45 0.4500 0.1699 0.0522
    71 M1/2 35.0 3 45 0.2600 0.9648 0.0238
    72 M1/2 35.0 5 75 2.2600 5.9523 0.2161
    73 M1/2 35.0 7 30 0.7800 3.3864 0.3403
    74 M1/2 35.0 9 60 1.8000 3.4721 0.4498
    75 M1/2 35.0 11 90 1.2900 1.4304 0.0189
    下载: 导出CSV

    表  3  BP神经网络预测值与实测结果对比

    Table  3.   Comparison between BP neural network predicted values and measured results

    组号 网络输入值 网络输出值 实测结果 相对误差 δ / %
    金刚石粒
    度标记
    次亚磷酸
    钠浓度
    ρ1 / (g·L−1)
    镀液
    pH值
    镀液
    温度
    θ / ℃
    镀层沉
    积速率
    v1 / (g·h−1)
    镀层
    密度
    ρ2 / (g·cm−3)
    镀层耐
    腐蚀性
    m1 / g
    镀层沉
    积速率
    v2 / (g·h−1)
    镀层
    密度
    ρ3 / (g·cm−3)
    镀层耐
    腐蚀性
    m2 / g
    镀层沉
    积速率
    镀层
    密度
    镀层耐腐
    蚀性能
    P1 M4/8 30.0 11 45 0.603 0 2.601 0 0.194 0 0.570 0 2.288 0 0.178 0 5.79 13.68 8.99
    P2 M4/8 35.0 5 75 0.599 0 1.063 0 0.131 0 0.560 0 1.149 0 0.116 0 6.96 −7.49 12.93
    P3 M8/12 30.0 11 45 0.485 0 0.752 0 0.165 0 0.510 0 0.821 0 0.189 0 −4.90 −8.40 −12.70
    P4 M8/12 35.0 5 75 0.580 0 1.689 0 0.160 0 0.540 0 1.842 0 0.182 0 7.41 −8.31 −12.09
    下载: 导出CSV

    表  4  GRNN预测值与实测结果对比

    Table  4.   Comparison between GRNN predicted values and measured results

    组号 网络输入值 网络输出值 实测结果 相对误差 δ / %
    金刚石粒
    度标记
    次亚磷酸
    钠浓度
    ρ1 / (g·L−1)
    镀液
    pH值
    镀液温度
    θ / ℃
    镀层沉
    积速率
    v1 / (g·h−1)
    镀层
    密度
    ρ2 / (g·cm−3)
    镀层耐腐
    蚀性能
    m1 / g
    镀层沉
    积速率
    v2 / (g·h−1)
    镀层
    密度
    ρ3 / (g·cm−3)
    镀层耐腐
    蚀性能
    m2 / g
    镀层沉
    积速率
    镀层
    密度
    镀层耐腐
    蚀性能
    P1 M4/8 30.0 11 45 0.528 0 2.459 0 0.182 0 0.570 0 2.288 0 0.178 0 −7.37 7.47 2.25
    P2 M4/8 35.0 5 75 0.595 0 1.079 0 0.121 0 0.560 0 1.149 0 0.116 0 6.25 −6.09 4.31
    P3 M8/12 30.0 11 45 0.532 0 0.808 0 0.185 0 0.510 0 0.821 0 0.189 0 4.31 −1.58 −2.12
    P4 M8/12 35.0 5 75 0.581 0 1.922 0 0.195 0 0.540 0 1.842 0 0.182 0 7.59 4.34 7.14
    下载: 导出CSV
  • [1] 刘金婷, 贺瑞, 刘瑞莹, 等. 碳化硅半导体材料应用及发展前景 [J]. 科技创新导报,2019,16(25):74-76. doi: 10.16660/j.cnki.1674-098X.2019.25.074

    LIU Jinting, HE Rui, LIU Ruiying, et al. Application and development prospect of silicon carbide semiconductor materials [J]. Science and Technology Innovation Herald,2019,16(25):74-76. doi: 10.16660/j.cnki.1674-098X.2019.25.074
    [2] 王宝玉, 宋为, 张太超. 电镀金刚线技术探讨 [J]. 金属制品,2018,44(3):10-13. doi: 10.3969/j.issn.1003-4226.2018.03.003

    WANG Baoyu, SONG Wei, ZHANG Taichao. Discussion on electroplating diamond wire technology [J]. Metal Products,2018,44(3):10-13. doi: 10.3969/j.issn.1003-4226.2018.03.003
    [3] 李振兴. 半导体晶体线锯切割工艺研究 [J]. 红外,2019,40(11):29-34. doi: 10.3969/j.issn.1672-8785.2019.11.006

    LI Zhenxing. Study on wire sawing technology of semiconductor crystal [J]. Infrared,2019,40(11):29-34. doi: 10.3969/j.issn.1672-8785.2019.11.006
    [4] 方莉俐, 刘韩, 姜羽飞. 线锯用金刚石微粉表面化学镀镍工艺及性能研究 [J]. 工具技术,2024,58(4):54-58. doi: 10.3969/j.issn.1000-7008.2024.04.009

    FANG Lili, LIU Han, JIANG Yufei. Research on electroless nickel plating process and performance of diamond powder surface for wire saws [J]. Tool Engineering,2024,58(4):54-58. doi: 10.3969/j.issn.1000-7008.2024.04.009
    [5] 张凤林, 袁慧, 周玉梅, 等. 硅片精密切割多线锯研究进展 [J]. 金刚石与磨料磨具工程,2006(6):14-18. doi: 10.3969/j.issn.1006-852X.2006.06.005

    ZHANG Fenglin, YUAN Hui, ZHOU Yumei, et al. Progress of multi-wire saw for precision slicing of silicon wafer [J]. Diamond & Abrasives Engineering,2006(6):14-18. doi: 10.3969/j.issn.1006-852X.2006.06.005
    [6] 常龙. 多线切割机高线速下振动特性及其优化控制研究 [D]. 秦皇岛: 燕山大学, 2023.

    CHANG Long. Research on vibration characteristics and optimal control of multi-wire saw at high wire speed [D]. Qinhuangdao: Yanshan University, 2023.
    [7] 李玉伟, 郑坤坤, 卞林芝, 等. 一种电镀金刚线及其制备方法: CN202211516260.5 [P]. 2022-11-30.

    LI Yuwei, ZHENG Kunkun, BIAN Linzhi, et al. An electroplated diamond wire and its preparation method: CN202211516260.5 [P]. 2022-11-30.
    [8] 黄世玲. 金刚石化学镀镍工艺研究及电化学分析 [D]. 郑州: 郑州大学, 2014.

    HUANG Shiling. Research and electrochemical analysis of electroless nickel plating on diamond [D]. Zhengzhou: Zhengzhou University, 2014.
    [9] RIEDEL W. Electroless nickel plating [M]. England: Finishing Publication Ltd, 1991.
    [10] 周琼宇, 谢蔚, 王小芬, 等. 基于人工神经网络预测Ni-W合金镀层的硬度和耐腐蚀性能 [J]. 表面技术,2016,45(12):140-146. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.023

    ZHOU Qiongyu, XIE Wei, WANG Xiaofen, et al. Artificial neural network-based prediction of hardness and corrosion resistance of Ni-W alloy coating [J]. Surface Technology,2016,45(12):140-146. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.023
    [11] LIU X, TIAN S, TAO F, et al. A review of artificial neural networks in the constitutive modeling of composite materials [J]. Composites Part B: Engineering,2021(1):109152.1-109152.15. doi: 10.1016/j.compositesb.2021.109152
    [12] JANG D P, FAZILY P, YOON J W. Machine learning-based constitutive model for J2-plasticity [J]. International Journal of Plasticity,2021,138(1):102919. doi: 10.1016/j.ijplas.2020.102919
    [13] WU Y, SHEN B, LUI L, et al. Artificial neural network modelling of plating rate and phosphorus content in the coatings of electroless nickel plating [J]. Journal of Materials Processing Technology,2008,205(1/2/3):207-213. doi: 10.1016/j.jmatprotec.2007.11.095
    [14] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用 [J]. 中国腐蚀与防护学报,2017,37(4):389-394. doi: 10.11902/1005.4537.2016.064

    GUO Baohui, QIU Youxu, LI Hailong. Application of artificial neural network for preparation process of Ni-SiC composite coatings on Ti-alloy [J]. Journal of Chinese Society for Corrosion and Protection,2017,37(4):389-394. doi: 10.11902/1005.4537.2016.064
    [15] 邓羽, 张杰, 彭中波, 等. 基于人工神经网络的Ni-ZrO2纳米镀层耐腐蚀性能预测 [J]. 装备环境工程,2022,19(2):98-105. doi: 10.7643/issn.1672-9242.2022.02.016

    DENG Yu, ZHANG Jie, PENG Zhongbo, et al. Prediction of corrosion resistance of Ni-ZrO2 nano-plating based on artificial neural network [J]. Equipment Environmental Engineering,2022,19(2):98-105. doi: 10.7643/issn.1672-9242.2022.02.016
    [16] 陈佳兵, 吴自银, 赵荻能, 等. 基于粒子群优化算法的PSO-BP海底声学底质分类方法 [J]. 海洋学报,2017,39(9):51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005

    CHEN Jiabing, WU Ziyin, ZHAO Dineng, et al. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms [J]. Acta Oceanologica Sinica, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005
    [17] HAYAJNEH M, HASSAN A M, ALRASHDAN A, et al. Prediction of tribological behavior of aluminum–copper based composite using artificial neural network [J]. Journal of Alloys & Compounds,2009,470(1/2):584-588. doi: 10.1016/j.jallcom.2008.03.035
    [18] XIAO L, WANG J, HOU R, et al. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting [J]. Energy,2015,82:524-549. doi: 10.1016/j.energy.2015.01.063
    [19] LIN Y H, GU S, WU W S, et al. Analysis and prediction of overloaded extra-heavy vehicles for highway safety using machine learning [J]. Mobile Information Systems, 2020(1):1-20. doi: 10.1155/2020/6667897
    [20] 简益梅, 许承东, 王倚文, 等. 基于改进GRNN的电离层VTEC误差模型 [J]. 计算机仿真,2022,39(8):45-50. doi: 10.3969/j.issn.1006-9348.2022.08.009

    JIAN Yimei, XU Chengdong, WANG Yiwen, et al. Ionospheric VTEC error model based on improved GRNN [J]. Computer Simulation,2022,39(8):45-50. doi: 10.3969/j.issn.1006-9348.2022.08.009
    [21] 侯克鹏, 包广拓, 孙华芬. 改进的MVO-GRNN神经网络岩爆预测模型研究 [J]. 安全与环境学报,2024,24(3):923-932. doi: 10.13637/j.issn.1009-6094.2023.0341

    HOU Kepeng, BAO Guangtuo, SUN Huafen. Research on improved MVO-GRNN neural network rockburst prediction model [J]. Journal of Safety and Environment,2024,24(3):923-932. doi: 10.13637/j.issn.1009-6094.2023.0341
    [22] 吴荣华, 王江安, 任席闯, 等. 不同波长近红外激光大气消光特性的泛化回归神经网络反演算法 [J]. 红外与毫米波学报,2010,29(6):461-464.

    WU Ronghua, WANG Jiangan, REN Xichuang, et al. Real time meafurement of atmospheric optical properties [J]. Journal of Infrared and Millimeter Waves,2010,29(6):461-464.
    [23] 张宝磊, 熊艺文, 王为庆, 等. 高速铣削TC4表面粗糙度预测模型研究 [J]. 组合机床与自动化加工技术,2015,(3):108-110. doi: 10.13462/j.cnki.mmtamt.2015.03.029

    ZHANG Baolei, XIONG Yiwen, WANG Weiqing, et al. Research on surface roughness prediction model for high-speed milling TC4 [J]. Modular Machine Tool and Automatic Machining Technique,2015,(3):108-110. doi: 10.13462/j.cnki.mmtamt.2015.03.029
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-06-07
  • 录用日期:  2024-06-17
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回