CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络和遗传算法的机器人加工工艺优化

吴福森

吴福森. 基于神经网络和遗传算法的机器人加工工艺优化[J]. 金刚石与磨料磨具工程, 2025, 45(2): 256-265. doi: 10.13394/j.cnki.jgszz.2024.0045
引用本文: 吴福森. 基于神经网络和遗传算法的机器人加工工艺优化[J]. 金刚石与磨料磨具工程, 2025, 45(2): 256-265. doi: 10.13394/j.cnki.jgszz.2024.0045
WU Fusen. Prediction and optimization of robot processing technology based on neural network and genetic algorithm[J]. Diamond & Abrasives Engineering, 2025, 45(2): 256-265. doi: 10.13394/j.cnki.jgszz.2024.0045
Citation: WU Fusen. Prediction and optimization of robot processing technology based on neural network and genetic algorithm[J]. Diamond & Abrasives Engineering, 2025, 45(2): 256-265. doi: 10.13394/j.cnki.jgszz.2024.0045

基于神经网络和遗传算法的机器人加工工艺优化

doi: 10.13394/j.cnki.jgszz.2024.0045
详细信息
    作者简介:

    吴福森,男,1987年生,硕士、高级工程师、高级技师、机器人国际认证讲师、硕士生导师。主要研究方向:机器人检验检测、培训,特种设备检验检测,石材加工技术等。E-mail:75230627@qq.com

  • 中图分类号: TG58; TG74

Prediction and optimization of robot processing technology based on neural network and genetic algorithm

  • 摘要: 以KUKA KR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模型训练并进行预测;最后,采用遗传算法对磨削加工工艺参数进行优化。结果表明:磨削工艺参数对3个磨削力分量和磨削合力的影响主次顺序不同,基本上都随径向切深ae、轴向切深ap进给速度vw的增加呈增长趋势,随主轴转速n的增加呈下降趋势;基于BP神经网络建立的预测模型具有较好的预测精度和稳定性,符合预测要求;同时,采用遗传算法得到的优化磨削工艺参数组合是ae = 2.28 mm,ap = 2.98 mm,n = 9 586.65 r/min,vw = 2 207.67 mm/min,此时的材料去除率预测值RMRRP = 14 999.79 mm3/min,材料去除率试验值RMRRT = 14 194.44 mm3/min,试验值相对预测值的相对误差为−5.37%。

     

  • 图  1  试验系统及加工工具

    Figure  1.  Experimental system and processing tool

    图  2  磨削力信号及分解示意图

    Figure  2.  Grinding force signal and decomposition schematic diagram

    图  3  磨削力随加工工艺参数变化的趋势

    Figure  3.  Trend of grinding force changing with processing parameters

    图  4  磨削力比随加工工艺参数变化的趋势

    Figure  4.  Trend of grinding force ratio changing with processing parameters

    图  5  线性回归图

    Figure  5.  Linear regression plot

    图  6  磨削力的预测值和试验值对比图

    Figure  6.  Comparison plots of predicted and experimental values of grinding forces

    表  1  磨削力的正交试验因素及水平

    Table  1.   Orthogonal test factors and levels of grinding force

    水平因素
    径向切深
    ae / mm
    A
    轴向切深
    ap / mm
    B
    主轴转速
    n / (r·min−1)
    C
    进给速度
    vw / ( mm·min−1)
    D
    121.05 000500
    231.56 0001 000
    342.07 0001 500
    452.58 0002 000
    563.09 0002 500
    下载: 导出CSV

    表  2  磨削力正交试验数据及极差分析结果

    Table  2.   Orthogonal experimental data and range analysis results of grinding forces

    序号ABCD切向磨削力
    Ft / N
    法向磨削力
    Fn / N
    轴向磨削力
    Fa / N
    磨削合力
    F / N
    法向和切向
    磨削力比Kf
    材料去除率
    RMRR / (mm3·min−1)
    121.05 00050012.1012.5939.8341.931.041.00 × 103
    221.56 0001 00030.8932.9449.8261.791.073.00 × 103
    322.07 0001 50032.6534.9336.0553.231.076.00 × 103
    422.58 0002 00040.5743.5933.3259.701.0710.00 × 103
    523.09 0002 50048.5552.9211.7864.441.0915.00 × 103
    631.06 0001 50016.5914.8339.1442.890.894.50 × 103
    731.57 0002 00045.5640.6761.5778.220.899.00 × 103
    832.08 0002 50071.3463.6073.6105.570.8915.00 × 103
    932.59 00050027.1524.3620.3835.110.903.75 × 103
    1033.05 0001 00064.8857.6538.5979.140.899.00 × 103
    1141.07 0002 50036.6838.5040.8756.591.0510.00 × 103
    1241.58 00050021.4617.7232.4138.900.833.00 × 103
    1342.09 0001 00046.7839.7851.9669.920.858.00 × 103
    1442.55 0001 500121.4396.0682.76147.820.7915.00 × 103
    1543.06 0002 000143.56108.8868.30161.440.7624.00 × 103
    1651.08 0001 00023.3719.5339.7646.380.845.00 × 103
    1751.59 0001 50048.4538.6766.5582.670.8011.25 × 103
    1852.05 0002 000164.93119.23163.9232.690.7220.00 × 103
    1952.56 0002 500227.37165.41151.50273.570.7331.25 × 103
    2053.07 00050058.2350.0338.0770.970.867.50 × 103
    2161.09 0002 00034.0526.8053.5364.630.7912.00 × 103
    2261.55 0002 500124.1980.59174.40215.620.6522.50 × 103
    2362.06 00050045.0045.4963.4882.591.016.00 × 103
    2462.57 0001 00093.3175.9375.99125.780.8115.00 × 103
    2563.08 0001 500146.63107.9089.36177.410.7427.00 × 103
    切向
    磨削力
    Ft / N
    Ki132.9524.5697.5132.79ap > ae > vw > n
    Ki245.1054.1192.6851.84
    Ki373.9872.1453.2873.15
    Ki4104.47101.9760.6885.73
    Ki588.6492.3741.00101.63
    Ri71.5277.4156.5168.84
    法向
    磨削力
    Fn / N
    Ki135.4022.4573.2230.04ap > vw > ae > n
    Ki240.2242.1273.5145.17
    Ki360.1960.6148.0158.48
    Ki478.5881.0750.4767.83
    Ki567.3475.4836.5180.20
    Ri43.1858.6237.0050.17
    轴向
    磨削力
    Fa / N
    Ki134.1642.6399.9038.83n > ae > vw > ap
    Ki246.6676.9574.4551.22
    Ki355.2677.8050.5162.77
    Ki491.9672.7953.6976.12
    Ki591.3549.2240.8490.43
    Ri57.8035.1759.0651.60
    磨削
    合力
    F / N
    Ki156.2250.48143.4453.90vw > ae > n > ap
    Ki268.1895.44124.4676.60
    Ki394.93108.8076.96100.80
    Ki4141.26128.4085.59119.33
    Ki5133.21110.6863.35143.16
    Ri85.0477.9180.0989.26
    法向和
    切向磨
    削力比
    Kf
    Ki11.0680.9220.8190.927ae > n > vw > ap
    Ki20.8930.8460.8920.891
    Ki30.8550.9090.9370.858
    Ki40.7890.8610.8730.847
    Ki50.7990.8660.8850.882
    Ri0.2800.0750.1190.080
    下载: 导出CSV

    表  3  神经网络预测值和试验值比较

    Table  3.   Comparison between neural network predicted values and experimental values

    序号ABCD对比项目FtFnFaF
    162.57 0002 500试验值 / N238.24166.19198.10351.60
    预测值 / N235.03163.42177.17325.18
    相对误差 / %−1.35−1.67−10.57−7.51
    261.58 0002 500试验值 / N83.2248.4883.11127.21
    预测值 / N72.8245.9987.50116.10
    相对误差 / %−12.50−5.145.28−8.73
    下载: 导出CSV
  • [1] 张永长, 杨涛, 纪静, 等. 厦门市翔安区2017年石材加工行业职业卫生现状调查 [J]. 职业卫生与应急救援,2018,36(4):328-330,353. doi: 10.16369/j.oher.issn.1007-1326.2018.04.013

    ZHANG Yongchang, YANG Tao, JI Jing, et al. Investigation on occupational health work of stone industries in Xiang’an District of Xiamen City in 2017 [J]. Occup Health and Emergency Rescue,2018,36(4):328-330,353. doi: 10.16369/j.oher.issn.1007-1326.2018.04.013
    [2] 曾晓立, 李英娥, 林立, 等. 某厂石雕作业工人生活质量调查 [J]. 中国工业医学杂志,2018,31(2):135-137. doi: 10.13631/j.cnki.zggyyx.2018.02.023

    ZENG Xiaoli, LI Yinge, LIN Li, et al. Survey on life quality of stone carving workers [J]. Chinese Journal of Industrial Medicine,2018,31(2):135-137. doi: 10.13631/j.cnki.zggyyx.2018.02.023
    [3] NGUYEN T M, SURDILOVIC D, KRUGER J, et al. Efficient application of industrial robots for automated stone sculptures milling: 1st international conference on stone and concrete machining [C]// Hannover: Institute of Production Engineering and Machine Tool, 2011.
    [4] 黄吉祥, 尹方辰, 黄身桂, 等. 机器人石材雕刻粗加工能耗建模与优化分析 [J]. 华侨大学学报(自然科学版),2024,45(4):471-477. doi: 10.11830/ISSN.1000-5013.202311024

    HUANG Jixiang, YIN Fangchen, HUANG Shengui, et al. Modeling and optimization analysis of energy consumption in rough machining of robotic stone carving [J]. Journal of Huaqiao University (Natural Science),2024,45(4):471-477. doi: 10.11830/ISSN.1000-5013.202311024
    [5] 周进. 基于时间尺度函数的工业机器人加工系统节能优化方法与典型应用研究 [D]. 重庆: 重庆大学, 2022.

    ZHOU Jin. Time-scaling-based energy-saving optimization method and typical application study of robot machining system [D]. Chongqing: Chongqing University, 2022.
    [6] 籍永建, 姚利诚. 机器人铣削加工颤振自适应识别方法研究 [J]. 中国机械工程,2023,34(18):2165-2176. doi: 10.3969/j.issn.1004-132X.2023.18.003

    JI Yongjian, YAO Licheng. Research on self-adaptive chatter recognition method for robotic milling [J]. China Mechanical Engineering,2023,34(18):2165-2176. doi: 10.3969/j.issn.1004-132X.2023.18.003
    [7] LI J, LI B, SHEN N, et al. Effect of the cutter path and the workpiece clamping position on the stability of the robotic milling system [J]. International Journal of Advanced Manufacturing Technology,2017,89(9/10/11/12):2919-2933. doi: 10.1007/s00170-016-9759-x
    [8] 陈齐志. 工业机器人铣削系统颤振分析与加工精度提升方法研究 [D]. 济南: 山东大学, 2022.

    CHEN Qizhi. Research on chatter analysis and machining accuracy improvement method of industrial robotic milling system [D]. Jinan: Shandong University, 2022.
    [9] 巩亚东, 赵显力, 张伟健, 等. 机器人砂带磨削单磨粒材料去除影响因素 [J]. 东北大学学报(自然科学版),2023,44(9):1285-1291. doi: 10.12068/j.issn.1005-3026.2023.09.009

    GONG Yadong, ZHAO Xianli, ZHANG Weijian, et al. Factors influencing single abrasive material removal for robotic abrasive belt grinding [J]. Journal of Northeastern University ( Natural Science),2023,44(9):1285-1291. doi: 10.12068/j.issn.1005-3026.2023.09.009
    [10] 陈庚, 向华, 叶寒, 等. 考虑法向接触力变化的机器人砂带磨削参数研究 [J]. 中国机械工程,2023,34(7):803-811,820. doi: 10.3969/j.issn.1004-132X.2023.07.006

    CHEN Geng, XIANG Hua, YE Han, et al. Research on robot abrasive belt grinding parameters considering the change of normal contact force [J]. China Mechanical Engineering,2023,34(7):803-811,820. doi: 10.3969/j.issn.1004-132X.2023.07.006
    [11] 李东阳, 谢海龙, 王清辉, 等. 基于力反馈的机器人砂带磨削虚拟示教轨迹规划方法 [J]. 现代制造工程,2022,(5):30-35. doi: 10.16731/j.cnki.1671-3133.2022.05.005

    LI Dongyang, XIE Hailong, WANG Qinghui, et al. Haptic feedback based virtual teaching method of toolpath planning for robot belt grinding processes [J]. Modern Manufacturing Engineering,2022,(5):30-35. doi: 10.16731/j.cnki.1671-3133.2022.05.005
    [12] 李弘毅, 阮玉镇, 汤绍钊, 等. 机器人磨削工艺参数对系统固有频率影响的试验研究 [J]. 机床与液压,2022,50(3):49-53. doi: 10.3969/j.issn.1001-3881.2022.03.009

    LI Hongyi, RUAN Yuzhen, TANG Shaozhao, et al. Experimental study on the influence of robot grinding parameters on system natural frequency [J]. Machine Tool & Hydraulics,2022,50(3):49-53. doi: 10.3969/j.issn.1001-3881.2022.03.009
    [13] 杨平, 杨冰雅, 肖硕男. 合模线飞边在线测量与机器人智能磨抛加工技术 [J]. 制造业自动化,2024,46(2):129-135. doi: 10.3969/j.issn.1009-0134.2024.02.026

    YANG Ping, YANG Bingya, XIAO Shuonan. On-line measurement and intelligent grinding processing technology by using robots for joint fin [J]. Manufacturing Automation,2024,46(2):129-135. doi: 10.3969/j.issn.1009-0134.2024.02.026
    [14] 王超, 郑乾健, 肖聚亮, 等. 考虑时变磨损的机器人磨抛参数优化研究 [J]. 天津大学学报(自然科学与工程技术版),2023,56(2):127-136. doi: 10.11784/tdxbz202110006

    WANG Chao, ZHENG Qianjian, XIAO Juliang, et al. Research on optimization of robot grinding and polishing parameters considering time-varying wear [J]. Journal of Tianjin University (Science and Technology),2023,56(2):127-136. doi: 10.11784/tdxbz202110006
    [15] 田凤杰, 车长林, 李孝辉, 等. 机器人磨抛微量去除飞机蒙皮包铝工艺试验 [J]. 航空制造技术,2022,65(13):56-62. doi: 10.16080/j.issn1671-833x.2022.13.056

    TIAN Fengjie, CHE Changlin, LI Xiaohui, et al. Experiment on micro-removal for aluminum clad of aircraft skin by robotic grinding [J]. Aeronautical Manufacturing Technology,2022,65(13):56-62. doi: 10.16080/j.issn1671-833x.2022.13.056
    [16] 黄吉祥, 刘舒颖, 黄辉, 等. 机械臂加工花岗岩的力和工具磨损特性 [J]. 华侨大学学报(自然科学版),2018,39(2):159-165. doi: 10.11830/ISSN.1000-5013.201712065

    HUANG Jixiang, LIU Shuying, HUANG Hui, et al. Forces and tool wear characteristics in granite grinding by robotic [J]. Journal of Huaqiao University (Natural Science),2018,39(2):159-165. doi: 10.11830/ISSN.1000-5013.201712065
    [17] 武沙桐. 磨削力约束下的立体石雕机器人加工轨迹规划研究 [D]. 厦门: 华侨大学, 2022.

    WU Shatong. Research on robot trajectory planning of three-dimensional stone carving based on grinding force constraint [D]. Xiamen: Huaqiao University, 2022.
    [18] 王雷. 基于BP神经网络的钛合金加工切削力预测模型研究 [D]. 天津: 天津理工大学, 2016.

    WANG Lei. Research on the cutting force prediction model of titanium alloy with BP neural network [D]. Tianjin: Tianjin University of Technology, 2016.
    [19] 刘寿军, 肖开永, 牛腾, 等. 基于神经网络-遗传算法的泵体零件热锻模具磨损与应力分析 [J]. 锻压技术,2024,49(2):208-214. doi: 10.13330/j.issn.1000-3940.2024.02.026

    LIU Shoujun, XIAO Kaiyong, NIU Teng, et al. Analysis on wear and stress of hot forging die for pump body parts based on neural network-genetic algorithm [J]. Forging & Stamping Technology,2024,49(2):208-214. doi: 10.13330/j.issn.1000-3940.2024.02.026
    [20] 王晶. 基于神经网络的机器人加工花岗石多目标工艺优化 [D]. 厦门: 华侨大学, 2020.

    WANG Jing. Multi-objective process parameters optimization of granite robot machining based on neural network [D]. Xiamen: Huaqiao University, 2020.
    [21] 梁强, 张贤明, 杜彦斌, 等. 基于灰色关联分析的齿环热精锻成形工艺参数优化 [J]. 计算机集成制造系统,2022,28(4):1020-1029. doi: 10.13196/j.cims.2022.04.006

    LIANG Qiang, ZHANG Xianming, DU Yanbin, et al. Parameters optimization in hot precision forging process of synchronizer ring based on grey relational analysis [J]. Computer Integrated Manufacturing Systems,2022,28(4):1020-1029. doi: 10.13196/j.cims.2022.04.006
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  235
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-05-27
  • 录用日期:  2024-06-17
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回