CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨砂带磨削温度场建模与有限元仿真

王海鹏 李建勇 赵超越 刘月明

王海鹏, 李建勇, 赵超越, 刘月明. 钢轨砂带磨削温度场建模与有限元仿真[J]. 金刚石与磨料磨具工程, 2025, 45(3): 385-395. doi: 10.13394/j.cnki.jgszz.2024.0050
引用本文: 王海鹏, 李建勇, 赵超越, 刘月明. 钢轨砂带磨削温度场建模与有限元仿真[J]. 金刚石与磨料磨具工程, 2025, 45(3): 385-395. doi: 10.13394/j.cnki.jgszz.2024.0050
WANG Haipeng, LI Jianyong, ZHAO Chaoyue, LIU Yueming. Modeling and finite element simulation of temperature field in rail abrasive belt grinding[J]. Diamond & Abrasives Engineering, 2025, 45(3): 385-395. doi: 10.13394/j.cnki.jgszz.2024.0050
Citation: WANG Haipeng, LI Jianyong, ZHAO Chaoyue, LIU Yueming. Modeling and finite element simulation of temperature field in rail abrasive belt grinding[J]. Diamond & Abrasives Engineering, 2025, 45(3): 385-395. doi: 10.13394/j.cnki.jgszz.2024.0050

钢轨砂带磨削温度场建模与有限元仿真

doi: 10.13394/j.cnki.jgszz.2024.0050
基金项目: 自然科学横向项目(KML21172530)。
详细信息
    通讯作者:

    赵超越,男,1996年生,工学博士、中级实验师。主要研究方向:开式砂带钢轨磨削。E-mail:10124@bjtu.edu.cn

  • 中图分类号: TG58; TG74; TH16

Modeling and finite element simulation of temperature field in rail abrasive belt grinding

  • 摘要: 使用砂带磨削钢轨表层材料可去除钢轨病害、延长钢轨服役寿命,但磨削过程中砂带与钢轨的接触区域内会产生高温,磨削后钢轨表面的热塑性变形使钢轨表层和内部分别产生残余拉应力和残余压应力,加快钢轨损伤,准确掌握钢轨磨削过程中磨削参数对磨削温度的影响规律,可进一步提高钢轨磨削质量并延长钢轨服役寿命。为此,基于弹性接触理论和内凹接触轮驱动的钢轨砂带磨削过程,建立钢轨表面接触压力分布区域模型;根据磨削热产生和传导原理构建钢轨砂带磨削表面温度分布模型,且采用仿真分析法,分析磨削温度在磨削功率、进给速度、砂带速度和钢轨磨削深度影响下的变化规律,并对钢轨亚表层的磨削温度分布进行研究,验证温度场模型的正确性。结果表明:磨削区最高温度与磨削功率和砂带速度呈正相关,与进给速度和钢轨磨削深度呈负相关,且进给速度对温度的影响最显著。

     

  • 图  1  钢轨砂带磨削过程示意图

    Figure  1.  Schematic diagram of abrasive belt grinding process for steel rail

    图  2  钢轨接触模型及接触区域俯视图

    Figure  2.  Rail contact model and top view of contact area

    图  3  钢轨横切面示意图

    Figure  3.  Rail cross section schematic diagram

    图  4  接触区域长度示意图

    Figure  4.  Schematic diagram of contact area length

    图  5  接触区域的压力分布

    Figure  5.  Stress distribution in contact zone

    图  6  三维传热模型

    Figure  6.  Three-dimensional heat transfer model

    图  7  磨削热流作用模型

    Figure  7.  Model of grinding heat flow effect

    图  8  有限元三维模型的网格划分

    Figure  8.  Mesh partitioning of finite element three-dimensional models

    图  9  温度仿真云图

    Figure  9.  Simulated thermal nephogram of temperature

    图  10  不同磨削功率下最高温度的理论和仿真值对比

    Figure  10.  Comparison of theoretical and simulated values of maximum temperature under different grinding powers

    图  11  磨削功率对最高温度理论和仿真值相对误差的影响

    Figure  11.  Influence of grinding power on relative error between theoretical and simulated values of maximum temperature

    图  12  砂带速度对最高温度理论和仿真值的影响

    Figure  12.  Influences of abrasive belt speeds on theoretical and simulated values of maximum temperature

    图  13  砂带速度对最高温度理论与仿真值相对误差的影响

    Figure  13.  Influences of abrasive belt speeds on relative error between theoretical and simulated values of maximum temperature

    图  14  不同进给速度下的最高温度理论和仿真值

    Figure  14.  Theoretical and simulation values of maximum tempera-ture at different feed rates

    图  15  进给速度对最高温度理论与仿真值相对误差的影响

    Figure  15.  Influences of feed rates on relative error between theore-tical and simulated maximum temperature values

    图  16  不同深度下的温度变化曲线

    Figure  16.  Temperature variation curves at different depths

    图  17  钢轨磨削实验现场

    Figure  17.  Rail grinding experiment site

    图  18  T440型热像仪温度测量结果

    Figure  18.  Temperature measurement results of T440 thermal imager

    图  19  理论温度与实验温度对比

    Figure  19.  Comparison between theoretical temperature and experimental temperature

    图  20  砂带速度对理论温度与实验温度相对误差的影响

    Figure  20.  Influences of abrasive belt velocities on relative errors of theoretical and experimental temperature

    表  1  温度仿真参数

    Table  1.   Temperature simulation parameters

    参数 取值
    密度 ρw / (kg·m−3) 7 850
    泊松比 ε 0.32
    弹性模量 E / GPa 208
    导热系数 KIC / (W·m−1·K−1 51
    比热容 c / (J·kg−1·K−1 460
    热辐射系数 CT 0.8
    热对流系数 h / (W·m−2·K−1) 5
    接触轮内凹面半径 R0 / mm 200
    下载: 导出CSV

    表  2  磨削功率对最高温度的影响

    Table  2.   Effect of grinding power on maximum temperature

    参数取值
    磨削功率 P / kW0.72, 0.78, 0.84, 0.90, 0.96
    最高温度理论值 θmax1 / ℃502.1, 522.6, 542.3, 561.4, 579.8
    最高温度仿真值 θmax2 / ℃505.4, 518.5, 530.9, 542.8, 554.1
    下载: 导出CSV

    表  3  砂带速度对最高温度的影响

    Table  3.   Influences of abrasive belt velocities on maximum temperature

    参数取值
    砂带速度 vs / (m·s−120, 22, 24, 26, 28
    最高温度理论值 θmax1 / ℃495.1, 519.2, 542.3, 564.5, 585.8
    最高温度仿真值 θmax2 / ℃472.7, 502.3, 530.9, 558.8, 586.1
    下载: 导出CSV

    表  4  进给速度对最高温度的影响

    Table  4.   Influences of feed speeds on maximum temperature

    参数取值
    进给速度 vw / (m·s−10.15, 0.20, 0.25, 0.30, 0.35
    最高温度理论值 θmax1 / ℃700.1, 606.3, 542.3, 495.1, 458.3
    最高温度仿真值 θmax2 / ℃685.0, 593.3, 530.6, 484.6, 449.0
    下载: 导出CSV
  • [1] SATOH Y, IWAFUCHI K. Effect of rail grinding on rolling contact fatigue in railway rail used in conventional line in Japan [J]. Wear,2008,265(9/10):1342-1348. doi: 10.1016/j.wear.2008.02.036
    [2] 金学松, 杜星, 郭俊, 等. 钢轨打磨技术研究进展 [J]. 西南交通大学学报,2010,45(1):1-11. doi: 10.3969/j.issn.0258-2724.2010.01.001

    JIN Xuesong, DU Xing, GUO Jun, et al. State of arts of research on rail grinding [J]. Journal of Southwest Jiaotong University,2010,45(1):1-11. doi: 10.3969/j.issn.0258-2724.2010.01.001
    [3] 智少丹, 李建勇, 樊文刚, 等. 钢轨打磨接触线模型研究 [J]. 铁道学报,2013,35(10):94-99. doi: 10.3969/j.issn.1001-8360.2013.10.014

    ZHI Shaodan, LI Jianyong, FAN Wengang, et al. Research on contact line model for rail grinding [J]. Journal of the China Railway Society,2013,35(10):94-99. doi: 10.3969/j.issn.1001-8360.2013.10.014
    [4] ZHI S D, ZAREMBSKI A M, LI J Y. Towards a better understanding of the rail grinding mechanism [C]//ASME 2013 Rail Transportation Division Fall Technical Conference. October 15-17, 2013. Altoona, Pennsylvania, USA. American Society of Mechanical Engineers, 2013: V001T01A003.
    [5] 郭战伟. 基于轮轨蠕滑最小化的钢轨打磨研究 [J]. 中国铁道科学,2011,32(6):9-15.

    GUO Zhanwei. Study of rail grinding based on wheel rail creep minimization [J]. China Railway Science,2011,32(6):9-15.
    [6] 刘月明, 李建勇, 蔡永林, 等. 钢轨打磨技术现状和发展趋势 [J]. 中国铁道科学,2014,35(4):29-37. doi: 10.3969/j.issn.1001-4632.2014.04.05

    LIU Yueming, LI Jianyong, CAI Yonglin, et al. Current state and development trend of rail grinding technology [J]. China Railway Science,2014,35(4):29-37. doi: 10.3969/j.issn.1001-4632.2014.04.05
    [7] 张子舆. 钢轨打磨过程中钢轨温度场及热机应力研究 [D]. 成都: 西南交通大学, 2017.

    ZHANG Ziyu. Research on temperature field andthermal-mechanical stress of rail in rail grinding process [D]. Chengdu: Southwest Jiaotong University, 2017.
    [8] 张磊. 单程平面磨削淬硬技术的理论分析和试验研究 [D]. 济南: 山东大学, 2006.

    ZHANG Lei. Study on mechanism and experiment of single-pass surface grind-hardening technology [D]. Jinan: Shandong University, 2006.
    [9] LI B Z, ZHU D H, PANG J Z, et al. Quadratic curve heat flux distribution model in the grinding zone [J]. The International Journal of Advanced Manufacturing Technology,2011,54(9):931-940. doi: 10.1007/s00170-010-2990-y
    [10] TIAN Y, SHIRINZADEH B, ZHANG D, et al. Effects of the heat source profiles on the thermal distribution for ultraprecision grinding [J]. Precision Engineering,2009,33(4):447-458. doi: 10.1016/j.precisioneng.2008.12.002
    [11] SHAH S M, NÉLIAS D, ZAIN-UL-ABDEIN M, et al. Numerical simulation of grinding induced phase transformation and residual stresses in AISI-52100 steel [J]. Finite Elements in Analysis and Design,2012,61:1-11. doi: 10.1016/j.finel.2012.05.010
    [12] GUO C, MALKIN S. Inverse heat transfer analysis of grinding, part 1: Methods [J]. Journal of Engineering for Industry,1996,118(1):137-142. doi: 10.1115/1.2803634
    [13] ZHANG L C, MAHDI M. Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation [J]. International Journal of Machine Tools & Manufacture,1995,35(10):1397-1409. doi: 10.1016/0890-6955(95)93590-3
    [14] 聂蒙, 李建勇, 沈海阔, 等. 钢轨打磨作业过程中磨削温度建模与仿真 [J]. 铁道学报,2013,35(10):89-93. doi: 10.3969/j.issn.1001-8360.2013.10.013

    NIE Meng, LI Jianyong, SHEN Haikuo, et al. Modeling and simulation of temperature in process of rail grinding operation [J]. Journal of the China Railway Society,2013,35(10):89-93. doi: 10.3969/j.issn.1001-8360.2013.10.013
    [15] 段金良. 钢轨冷却过程中温度场及弯曲变形数值模拟研究[D]. 包头: 内蒙古科技大学, 2012.

    DUAN Jinliang. Numerical simulation of temperature field anddeformation in rail cooling process [D]. Baotou: Inner Mongolia University of Science & Technology, 2012.
    [16] 杨天勇. 钢轨砂带磨削的残余应力及其影响因素研究 [D]. 北京: 北京交通大学, 2019.

    YANG Tianyong. Research on residual stress state and influence factors of rail grinding with abrasive belt [D]. Beijing: Beijing Jiaotong University, 2019.
    [17] GUO C, WU Y, VARGHESE V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels [J]. CIRP Annals-Manufacturing Technology,1999,48(1):247-250. doi: 10.1016/S0007-8506(07)63176-X
    [18] ZHOU K, DING H H, STEENBERGEN M, et al. Temperature field and material response as a function of rail grinding parameters [J]. International Journal of Heat and Mass Transfer,2021,175:121366. doi: 10.1016/j.ijheatmasstransfer.2021.12136
    [19] 刘月明, 何喆, 王荣全, 等. 钢轨试件砂带磨削行为试验研究 [J]. 应用基础与工程科学学报,2017,25(2):419-426. doi: 10.16058/j.issn.1005-0930.2017.02.019

    LIU Yueming, HE Zhe, WANG Rongquan, et al. Experimental investigation on grinding behavior of abrasive belt for rail specimen [J]. Journal of Basic Science and Engineering,2017,25(2):419-426. doi: 10.16058/j.issn.1005-0930.2017.02.019
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-16
  • 修回日期:  2024-08-02
  • 录用日期:  2024-08-12
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回