CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壁CFRP管端面磨削稳定性实验研究

王树龙 田俊超 康仁科 董志刚 鲍岩

王树龙, 田俊超, 康仁科, 董志刚, 鲍岩. 薄壁CFRP管端面磨削稳定性实验研究[J]. 金刚石与磨料磨具工程, 2025, 45(2): 189-196. doi: 10.13394/j.cnki.jgszz.2024.0054
引用本文: 王树龙, 田俊超, 康仁科, 董志刚, 鲍岩. 薄壁CFRP管端面磨削稳定性实验研究[J]. 金刚石与磨料磨具工程, 2025, 45(2): 189-196. doi: 10.13394/j.cnki.jgszz.2024.0054
WANG Shulong, TIAN Junchao, KANG Renke, DONG Zhigang, BAO Yan. Experimental study on end face grinding stability of thin-walled CFRP circular cell[J]. Diamond & Abrasives Engineering, 2025, 45(2): 189-196. doi: 10.13394/j.cnki.jgszz.2024.0054
Citation: WANG Shulong, TIAN Junchao, KANG Renke, DONG Zhigang, BAO Yan. Experimental study on end face grinding stability of thin-walled CFRP circular cell[J]. Diamond & Abrasives Engineering, 2025, 45(2): 189-196. doi: 10.13394/j.cnki.jgszz.2024.0054

薄壁CFRP管端面磨削稳定性实验研究

doi: 10.13394/j.cnki.jgszz.2024.0054
基金项目: 国家重点研发计划项目(2019YFA0708902);大连市高层次人才创新支持计划项目(2020RD02);中央高校基本科研业务费资助(DUT22LAB501; DUT22ZD201)。
详细信息
    通讯作者:

    鲍岩,1987年生,教授,博士研究生导师,主要研究方向:面向构件性能的超精密加工、弱刚性构件精密加工等理论技术。E-mail: baoy@dlut.edu.cn

  • 中图分类号: TH161+.6

Experimental study on end face grinding stability of thin-walled CFRP circular cell

  • 摘要: 针对阵列复合材料管加工中的磨削稳定性问题,以单个薄壁CFRP管为研究对象,结合其结构特征定义切出角度和磨削作用角,开展端面磨削加工实验,分析切出角度对磨削稳定性的影响规律,并基于磨削作用角和切出角度之间的关系,进一步分析磨削速度、实际进给率、磨削深度对磨削稳定性的影响规律。结果表明:切出角度是影响磨削稳定性的主要因素,当切出角度为60°~90°时,磨削作用角较小,磨削稳定性较差;随着磨削速度的增大,磨削作用角逐渐增大,磨削稳定性呈增强的趋势;随着实际进给率的增大,磨削作用角无明显变化,磨削稳定性呈先减弱后几乎不变的趋势;随着磨削深度的增大,磨削作用角逐渐减小,磨削稳定性呈减弱的趋势。

     

  • 图  1  CFRP管结构示意图

    Figure  1.  Schematic diagram of CFRP circular cell

    图  2  端面磨削加工实验装置

    Figure  2.  Experimental setup for end face grinding

    图  3  切出角度计算示意图

    Figure  3.  Schematic diagram of calculation of exit angle

    图  4  磨削力分解图

    Figure  4.  Schematic diagram of grinding force decomposition

    图  5  不同切出角度下轴向力时域及频域变化

    Figure  5.  Time domain and frequency domain diagram of axial force at different exit angles

    图  6  切出角度对磨削力、磨削作用角及合力标准差的影响

    Figure  6.  Effect of exit angle on grinding force, interaction angle of grinding and resultant standard deviation

    图  7  磨削速度对磨削力、磨削作用角及合力标准差的影响

    Figure  7.  Effect of grinding speed on grinding force, interaction angle of grinding and resultant standard deviation

    图  8  实际进给率对磨削力、磨削作用角及合力标准差的影响

    Figure  8.  Effect of real feed rate on grinding force, interaction angle of grinding and resultant standard deviation

    图  9  磨削深度对磨削力、磨削作用角及合力标准差的影响

    Figure  9.  Effect of grinding depth on grinding force, interaction angle of grinding and resultant standard deviation

    表  1  CFRP管预浸料参数表

    Table  1.   Parameters of CFRP circular cell prepreg

    参数数值
    纤维面密度 ρ1 / (g·m−2)75
    树脂体积分数 φ1 / %38
    预浸料面密度 ρ2 / (g·m−2)121
    单层厚度 l / mm0.075
    下载: 导出CSV

    表  2  CFRP管端面磨削加工实验参数表

    Table  2.   Experimental Parameters of end face grinding for CFRP circular cell

    组别 切出角度
    φ / (°)
    磨削速度
    vc / (m·s−1)
    实际进给率
    r / (mm·r−1)
    磨削深度
    ap / mm
    1 10、30、50、70、90、
    110、130、150
    8.38 0.2 2.0
    2 70 4.19、6.28、
    8.38、10.47
    0.2 2.0
    3 70 8.38 0.3、0.4、0.5 2.0
    4 70 8.38 0.2 0.5、1.0、3.0
    下载: 导出CSV
  • [1] 史耀辉, 沈峰, 郝旭峰, 等. 一种碳纤维管阵结构及其制作方法: CN108908950A [P]. 2018-11-30.

    SHI Yaohui, SHEN Feng, HAO Xufeng, et al. A carbon fiber tube array structure and its manufacturing method: CN108908950A [P]. 2018-11-30.
    [2] TIAN J C, KANG R K, DONG Z G, et al. Multi-scale machining damages of CFRP circular cell honeycomb during end face machining [J]. Journal of Manufacturing Processes,2023,86:282-293. doi: 10.1016/j.jmapro.2023.01.006
    [3] ZARROUK T, SALHI J E, NOUARI M, et al. Modeling machining of aluminum honeycomb structure [J]. The International Journal of Advanced Manufacturing Technology,2022,123(7):2481-2500. doi: 10.1007/s00170-022-10350-9
    [4] 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展 [J]. 机械工程学报,2023,59(19):348-374. doi: 10.3901/JME.2023.19.348

    JIA Zhenyuan, FU Rao, WANG Fuji. Research advance review of mach-ining technology for carbon fiber reinforced polymer composite com-ponents [J]. Journal of Mechanical Engineering,2023,59(19): 348-374. doi: 10.3901/JME.2023.19.348
    [5] 田俊超, 鲍岩, 康仁科, 等. 薄壁CFRP管端面磨削及铣削加工质量对比 [J]. 复合材料学报,2024,41(5):2503-2519. doi: 10.13801/j.cnki.fhclxb.20230914.004

    TIAN Junchao, BAO Yan, KANG Renke, et al. Comparative study on the machining quality of thin-walled CFRP circular cell in end face grinding and milling [J]. Acta Materiae Compositae Sinica,2024,41(5):2503-2519. doi: 10.13801/j.cnki.fhclxb.20230914.004
    [6] SAFI S M, AMIRABADI H, LIRABI I, et al. A new approach for chatter prediction in robotic milling based on signal processing in time domain [J]. Applied Mechanics and Materials,2013,346:45-51. doi: 10.4028/www.scientific.net/AMM.346.45
    [7] 王昱昊, 吕凯波, 娄培生, 等. 薄壁筒车削颤振稳定性预测 [J]. 机床与液压,2022,50(3):151-156. doi: 10.3969/j.issn.1001-3881.2022.03.029

    WANG Yuhao, LYU Kaibo, LOU Peisheng, et al. Chatter stability prediction of thin-walled cylinder turning [J]. Machine Tool & Hydraulics,2022,50(3):151-156. doi: 10.3969/j.issn.1001-3881.2022.03.029
    [8] JIANG H T, JIN G, ZHANG X Y, et al. Analysis of dynamic characteristics of thin-walled parts based on finite element method [J]. Journal of Physics: Conference Series, 2021,1948(1):012136. doi: 10.1088/1742-6596/1948/1/012136
    [9] 刘涛, 邓朝晖, 罗程耀, 等. 基于动态磨削深度的非圆轮廓高速磨削稳定性建模与分析 [J]. 机械工程学报,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264

    LIU Tao, DENG Zhaohui, LUO Chengyao, et al. Stability modeling and analysis of non-circular high-speed grinding with consideration of dynamic grinding depth [J]. Journal of Mechanical Engineering,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264
    [10] 迟玉伦, 李郝林. 切入式外圆磨削接触刚度与固有频率研究 [J]. 中国机械工程, 2016, 27(10): 1294-1298, 1326. doi: 10.3969/j.issn.1004-132X.2016.10.003

    CHI Yulun, LI Haolin. Study on contact stiffness and natural frequency in cylindrical plunge grinding [J]. China Mechanical Engineering, 2016, 27(10): 1294-1298, 1326. doi: 10.3969/j.issn.1004-132X.2016.10.003
    [11] 杨淮文, 冯伟, 朱建辉, 等. CFRP砂轮与钢基体砂轮高速磨削过程中的动力学特性 [J]. 金刚石与磨料磨具工程,2021,41(5):52-58. doi: 10.13394/j.cnki.jgszz.2021.5.0009

    YANG Huaiwen, FENG Wei, ZHU Jianhui, et al. Dynamic characteristics of high speed grinding process of CFRP wheel and steel based wheel [J]. Diamond & Abrasives Engineering,2021,41(5):52-58. doi: 10.13394/j.cnki.jgszz.2021.5.0009
    [12] 翁泽宇, 丁红钢, 郭明飞, 等. 平面磨削颤振试验研究 [J]. 机械强度,2006,28(1):25-28. doi: 10.3321/j.issn:1001-9669.2006.01.006

    WENG Zeyu, DING Honggang, GUO Mingfei, et al. Experimental investigation of grinding chatter in surface grinding process [J]. Journal of Mechanical Strength,2006,28(1):25-28. doi: 10.3321/j.issn:1001-9669.2006.01.006
    [13] SUN C, NIU Y J, LIU Z X, et al. Study on the surface topography considering grinding chatter based on dynamics and reliability [J]. The International Journal of Advanced Manufacturing Technology,2017,92(9):3273-3286. doi: 10.1007/s00170-017-0385-z
    [14] SUN C, DENG Y S, LAN D X, et al. Modeling and predicting ground sur-face topography on grinding chatter [J]. Procedia CIRP,2018,71:364-369. doi: 10.1016/j.procir.2018.05.042
    [15] 朱欢欢, 李厚佳, 张梦梦, 等. 基于BP神经网络的外圆磨削颤振在线识别和监测方法 [J]. 金刚石与磨料磨具工程,2022,42(1):104-111. doi: 10.13394/j.cnki.jgszz.2021.0097

    ZHU Huanhuan, LI Houjia, ZHANG Mengmeng, et al. On-line identification and monitoring method for external grinding flutter based on BP neural network [J]. Diamond & Abrasives Engineering,2022,42(1):104-111. doi: 10.13394/j.cnki.jgszz.2021.0097
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  253
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-27
  • 录用日期:  2024-07-04
  • 网络出版日期:  2024-07-04
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回