CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合粒径磨料的磁粒研磨及光整加工试验

刘冰洋 丁云龙 邵文杰 韩冰 陈燕

刘冰洋, 丁云龙, 邵文杰, 韩冰, 陈燕. 混合粒径磨料的磁粒研磨及光整加工试验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 377-384. doi: 10.13394/j.cnki.jgszz.2024.0078
引用本文: 刘冰洋, 丁云龙, 邵文杰, 韩冰, 陈燕. 混合粒径磨料的磁粒研磨及光整加工试验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 377-384. doi: 10.13394/j.cnki.jgszz.2024.0078
LIU Bingyang, DING Yunlong, SHAO Wenjie, HAN Bing, CHEN Yan. Magnetic particle grinding and finishing test of mixed particle size abrasives[J]. Diamond & Abrasives Engineering, 2025, 45(3): 377-384. doi: 10.13394/j.cnki.jgszz.2024.0078
Citation: LIU Bingyang, DING Yunlong, SHAO Wenjie, HAN Bing, CHEN Yan. Magnetic particle grinding and finishing test of mixed particle size abrasives[J]. Diamond & Abrasives Engineering, 2025, 45(3): 377-384. doi: 10.13394/j.cnki.jgszz.2024.0078

混合粒径磨料的磁粒研磨及光整加工试验

doi: 10.13394/j.cnki.jgszz.2024.0078
基金项目: 辽宁省教育厅科学研究经费项目(2019LNQN01);辽宁省科技厅博士启动经费(2021-BS-241)。
详细信息
    作者简介:

    丁云龙,男,1988年生,博士、副教授、硕士生导师。主要研究方向:磁粒研磨光整加工。E-mail:dylustl@163.com

  • 中图分类号: TQ73; TG58

Magnetic particle grinding and finishing test of mixed particle size abrasives

  • 摘要: 在磁粒研磨及光整加工试验中,相比于单一粒径磨料,采用混合粒径磨料能够提高磁性磨粒产生的磁粒刷的刚性和密度,进而提高加工效果。为探究混合粒径磨料磁粒研磨及光整加工的最佳工艺参数,基于响应曲面法,采用铁基氧化铝磁性磨料在SM4多功能机床上对SUS304不锈钢钢板工件的表面进行加工。以加工后工件的表面粗糙度Ra为响应值,对试验过程中的主轴转速、磨料质量比、磨料粒径比等主要试验参数进行优化和分析。结果表明:在主轴转速为511 r/min、磨料质量比为1.67、磨料粒径比为2.00的最佳参数组合下,工件的表面粗糙度Ra由0.244 μm的原始值降为0.036 μm的试验值,且Ra试验值与预测值0.038 μm相比,二者相对误差的绝对值为5.26%。采用混合粒径磨料的最佳参数组合进行光整加工,可有效去除工件表面的划痕,降低其表面粗糙度并提高其表面质量。

     

  • 图  1  磨料在磁场中的受力图

    Figure  1.  Force diagram of abrasives in magnetic field

    图  2  仿真模型

    Figure  2.  Simulation model

    图  3  试验装置

    Figure  3.  Test setup

    图  4  实际值与预测值对比图

    Figure  4.  Comparison chart between actual and predicted values

    图  5  Ra预测值与外学生化残差分布图

    Figure  5.  Distribution diagram of Ra predicted values and external studentized residuals

    图  6  2种研磨参数对粗糙度的影响

    Figure  6.  Influence of two grinding parameters on roughness

    图  7  加工前后工件的表面粗糙度轮廓曲线

    Figure  7.  Surface roughness profile curves of workpiece before and after processing

    图  8  加工前后工件的表面形貌变化

    Figure  8.  Changes in surface morphology of workpieces before and after processing

    表  1  加工参数

    Table  1.   Processing parameters

    参数 规格或取值
    工件尺寸 150 mm × 120 mm × 10 mm
    工件材料 SUS304不锈钢
    加工间隙 d / mm 1.5
    加工时间 t / min 15
    进给速度 vw / (m·min−1) 3
    磁极头 N35永磁体,ф 20 mm
    磨料填充量 m / g 1.5
    下载: 导出CSV

    表  2  Box-Behnken试验的因素、水平及编码

    Table  2.   Factors, levels and codes of Box-Behnken tests


    水平及编码
    因素
    主轴转速
    n / (r·min−1)
    A
    磨料质量比
    R1
    B
    磨料粒径比
    R2
    C
    −1 400 0.50 1.5
    0 500 1.25 2.0
    1 600 2.00 2.5
    下载: 导出CSV

    表  3  响应面试验结果

    Table  3.   Experimental results of response surfaces

    序号 A B C 表面粗糙度 Ra / μm
    1 −1 −1 0 0.083
    2 1 −1 0 0.077
    3 −1 1 0 0.081
    4 1 1 0 0.053
    5 −1 0 −1 0.072
    6 1 0 −1 0.068
    7 −1 0 1 0.086
    8 1 0 1 0.063
    9 0 −1 −1 0.056
    10 0 1 −1 0.044
    11 0 −1 1 0.061
    12 0 1 1 0.051
    13 0 0 0 0.041
    14 0 0 0 0.039
    15 0 0 0 0.042
    下载: 导出CSV

    表  4  方差分析结果

    Table  4.   Results of ANOVA

    项目 平方和 自由度 均方差 F P 显著性
    模型 0.0036 9 0.0004 145.6200 <0.0001 非常显著
    A 0.0005 1 0.0005 167.1100 <0.0001 非常显著
    B 0.0003 1 0.0003 103.4700 0.0002 显著
    C 0.0001 1 0.0001 19.8100 0.0067 显著
    AB 0.0001 1 0.0001 43.4700 0.0012 显著
    AC 0.0001 1 0.0001 32.4300 0.0023 显著
    BC 1.000 × 10−6 1 1.000 × 10−6 0.3593 0.5750
    A2 0.0025 1 0.0025 899.6400 <0.0001 非常显著
    B2 0.0002 1 0.0002 61.1900 0.0005 显著
    C2 0.0001 1 0.0001 40.7400 0.0014 显著
    残差 0.0000 5 2.783 × 10−6
    失拟项 9.250 × 10−6 3 3.083 × 10−6 1.32 0.4581 不显著
    纯误差 4.667 × 10−6 2 2.333 × 10−6
    总和 0.0037 14
    R2=0.996 2 校核后RAdj2=0.989 4
    下载: 导出CSV
  • [1] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展 [J]. 表面技术,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004

    LIU Wenhao, CHEN Yan, LI Wenlong, et al. Research progress of magnetic abrasive finishing technology [J]. Surface Technology,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004
    [2] AHMAD S, SINGARI R, MISHRA R. Development of Al2O3-SiO2 based magnetic abrasive by sintering method and its performance on Ti-6Al-4V during magnetic abrasive finishing [J]. Transactions of the IMF,2021(99):94-101. doi: 10.1080/00202967.2021.1865644
    [3] 张亚军, 赵春光, 党恒耀, 等. 列车制动系统杠杆螺栓用17Cr16Ni2不锈钢的应力腐蚀敏感性 [J]. 中国铁道科学,2022,43(1):126-133. doi: 10.3969/j.issn.1001-4632.2022.01.15

    ZHANG Yajun, ZHAO Chunguang, DANG Hengyao, et al. Stress corrosion susceptibility of 17Cr16Ni2 stainless steel for lever bolt of train brake system [J]. China Railway Science,2022,43(1):126-133. doi: 10.3969/j.issn.1001-4632.2022.01.15
    [4] 张东阳. 基于低频交变磁场对管件内表面精密磁粒研磨工艺研究 [D]. 鞍山: 辽宁科技大学, 2022.

    ZHANG Dongyang. Research on precision magnetic particle grinding process for inner surface of pipe fittings based on low frequency alternating magnetic field [D]. Anshan: University of Science and Technology Liaoning, 2022.
    [5] XIE H J, ZOU Y H. Study on the magnetic abrasive finishing process using alternating magnetic field—discussion on the influence of current waveform variation [J]. The International Journal of Advanced Manufacturing Technology,2021,114(7):2471-2483. doi: 10.1007/s00170-021-07048-9
    [6] 刘宁, 张桂香, 陈昊鑫, 等. 基于响应曲面法的磁力研磨310S不锈钢参数优化 [J]. 电镀与精饰,2023,45(6):77-83. doi: 10.3969/j.issn.1001-3849.2023.06.013

    LIU Ning, ZHANG Guixiang, CHEN Haoxin, et al. Parameter optimization of magnetic abrasive finishing 310S stainless steel based on response surface methodology [J]. Plating & Finishing,2023,45(6):77-83. doi: 10.3969/j.issn.1001-3849.2023.06.013
    [7] 刘新龙, 陈燕, 王杰, 等. 电解-旋转超声复合磁力研磨去除TC4钛合金孔边毛刺 [J]. 电镀与涂饰,2019,38(13):680-684. doi: 10.19289/j.1004-227x.2019.13.009

    LIU Xinlong, CHEN Yan, WANG Jie, et al. Deburring of TC4 titanium alloy hole edge by magnetic grinding in combination with electrolysis and rotational ultrasonic vibration [J]. Electroplating & Finishing,2019,38(13):680-684. doi: 10.19289/j.1004-227x.2019.13.009
    [8] 任泽, 朱永伟, 董彦辉, 等. 弹性磁极磨头磁力研磨TC4钛合金的工艺优化 [J]. 金刚石与磨料磨具工程,2023,43(2):257-264. doi: 10.13394/j.cnki.jgszz.2022.0101

    REN Ze, ZHU Yongwei, DONG Yanhui, et al. Process optimization of magnetic abrasive finishing of TC4 titanium alloy with elastic magnetic pole grinding head [J]. Diamond & Abrasive Engineering,2023,43(2):257-264. doi: 10.13394/j.cnki.jgszz.2022.0101
    [9] 马付建, 栾诗宇, 罗奇超, 等. 超声辅助磁性磨料光整加工工艺对钛合金表面完整性的影响 [J]. 中国表面工程,2019,32(2):128-136. doi: 10.11933/j.issn.1007-9289.20181105001

    MA Fujian, LUAN Shiyu, LUO Qichao, et al. Effects of ultrasonic assisted magnetic abrasive finishing on surface integrity of titanium alloy [J]. China Surface Engineering,2019,32(2):128-136. doi: 10.11933/j.issn.1007-9289.20181105001
    [10] PANDEY K, PANDEY P M. An integrated application of chemo-ultrasonic approach for improving surface finish of Si (100) using double disk magnetic abrasive finishing [J]. The International Journal of Advanced Manufacturing Technology,2019,103(9):3871-3886. doi: 10.1007/s00170-019-03829-5
    [11] 陈晓明, 徐成宇, 季冬锋, 等. 基于混合粒径的TC4钛合金低粗糙度磁力研磨研究 [J]. 表面技术,2023,52(12):112-118,159. doi: 10.16490/j.cnki.issn.1001-3660.2023.12.010

    CHEN Xiaoming, XU Chengyu, JI Dongfeng, et al. Research on low roughness magnetic grinding of TC4 titanium alloy based on mixed particle size [J]. Surface Technology,2023,52(12):112-118,159. doi: 10.16490/j.cnki.issn.1001-3660.2023.12.010
    [12] 郭峰, 王胜利, 王辰伟, 等. 不同粒径SiO2磨料混合对钴化学机械抛光的影响 [J]. 电镀与涂饰,2022,41(23):1695-1700. doi: 10.19289/j.1004-227x.2022.23.009

    GUO Feng, WANG Shengli, WANG Chenwei, et al. The effect of SiO2 abrasive mixture with different particle sizes on cobalt chemical mechanical polishing [J]. Plating & Finishing,2022,41(23):1695-1700. doi: 10.19289/j.1004-227x.2022.23.009
    [13] 程海东. 管件内表面磁粒研磨中磨粒动力学仿真研究 [D]. 鞍山: 辽宁科技大学, 2022.

    CHENG Haidong. Simulation study of abrasive particle dynamics in magnetic abrasive finishing of inner surface of piped [D]. Anshan: University of Science and Technology Liaoning, 2022.
    [14] 肖阳, 孙友松, 陈光忠. 永磁场磁力研磨TC11钛合金的实验研究 [J]. 表面技术,2017,46(2):229-234. doi: 10.16490/j.cnki.issn.1001-3660.2017.02.039

    XIAO Yang, SUN Yousong, CHEN Guangzhong. Experimental study of magnetic abrasive finishing of TC11 titanium alloy in permanent magnetic field [J]. Surface Technology,2017,46(2):229-234. doi: 10.16490/j.cnki.issn.1001-3660.2017.02.039
    [15] 张志鹏, 陈燕, 潘明诗, 等. 基于Hilbert曲线磁粒研磨轨迹均匀性实验研究 [J]. 表面技术,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037

    ZHANG Zhipeng, CHEN Yan, PAN Mingshi, et al. Experimental study on magnetic particle grinding uniformity based on Hilbert curve [J]. Surface Technology,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037
    [16] 陈士军, 龚木联, 刘溯逸, 等. 基于响应曲面法的三元地聚合物注浆材料耐久性能研究 [J]. 硅酸盐通报,2024,43(3):938-947. doi: 10.16552/j.cnki.issn1001-1625.2024.03.006

    CHEN Shijun, GONG Mulian, LIU Suyi, et al. Research on durability performance of ternary geopolymer grouting materials based on response surface methodology [J]. Bulletin of the Chinese Ceramic Society,2024,43(3):938-947. doi: 10.16552/j.cnki.issn1001-1625.2024.03.006
    [17] 王鹏川, 金洙吉. 铁基金刚石磁性磨料的制备及其性能研究 [J]. 表面技术,2016(45):78-83. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.013

    WANG Pengchuan, JIN Zhuji. Preparation and performance of ironbas-ed diamond magnetic abrasive [J]. Surface Technology,2016(45):78-83. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.013
    [18] 张世学, 丁云龙, 吕旖旎, 等. 烧结法制备铁基立方氮化硼磁性磨粒及其磨削性能研究 [J]. 表面技术,2022,51(9):271-279. doi: 10.16490/j.cnki.issn.1001-3660.2022.09.000

    ZHANG Shixue, DING Yunlong, LV Yini, et al. Preparation of iron-based cubic boron nitride magnetic abrasive particles by sintering method and study on their grinding performance [J]. Surface Technology,2022,51(9):271-279. doi: 10.16490/j.cnki.issn.1001-3660.2022.09.000
    [19] LI Z H, ZHAO Y G, LIU G X, et al. Parametric studies on finishing of AZ31B magnesium alloy with Al2O3 magnetic abrasives prepared by combining plasma molten metal powder with sprayed abrasive powder [J]. Micromachines,2022,13(9):1369. doi: 10.3390/mi13091369
    [20] 梁伟, 张桂香, 张鹏, 等. 磁力研磨光整加工ZrO2陶瓷材料试验研究 [J]. 表面技术,2018,47(9):310-316. doi: 10.16490/j.cnki.issn.1001-3660.2018.09.041

    LIANG Wei, ZHANG Guixiang, ZHANG Peng, et al. Experimental study on magnetic abrasive finishing and polishing of ZrO2 ceramic materials [J]. Surface Technology,2018,47(9):310-316. doi: 10.16490/j.cnki.issn.1001-3660.2018.09.041
    [21] 杨欢, 陈松, 张磊, 等. 脉冲电磁场辅助平面磁粒研磨加工试验 [J]. 表面技术,2022,51(2):313-321. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.031

    YANG Huan, CHEN Song, ZHANG Lei, et al. Experimental study on pulse electromagnetic field assisted planar magnetic abrasive finishing [J]. Surface Technology,2022,51(2):313-321. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.031
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 修回日期:  2024-06-07
  • 录用日期:  2024-06-24
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回