Magnetic particle grinding and finishing test of mixed particle size abrasives
-
摘要: 在磁粒研磨及光整加工试验中,相比于单一粒径磨料,采用混合粒径磨料能够提高磁性磨粒产生的磁粒刷的刚性和密度,进而提高加工效果。为探究混合粒径磨料磁粒研磨及光整加工的最佳工艺参数,基于响应曲面法,采用铁基氧化铝磁性磨料在SM4多功能机床上对SUS304不锈钢钢板工件的表面进行加工。以加工后工件的表面粗糙度Ra为响应值,对试验过程中的主轴转速、磨料质量比、磨料粒径比等主要试验参数进行优化和分析。结果表明:在主轴转速为511 r/min、磨料质量比为1.67、磨料粒径比为2.00的最佳参数组合下,工件的表面粗糙度Ra由0.244 μm的原始值降为0.036 μm的试验值,且Ra试验值与预测值0.038 μm相比,二者相对误差的绝对值为5.26%。采用混合粒径磨料的最佳参数组合进行光整加工,可有效去除工件表面的划痕,降低其表面粗糙度并提高其表面质量。Abstract:
Objectives Magnetic particle grinding finishing technology as an advanced processing technology can achieve high precision surface treatment. In order to simplify the test device, reduce the test cost and improve the processing effect, the single particle size abrasive is changed to mixed particle size abrasive without changing the test device, so as to improve the grinding effect of magnetic particles. Methods Finite element analysis software is used to simulate the magnetic field in the machining area, and the magnetic field data is imported into the discrete element simulation software through an API interface to obtain the magnetic field during the simulation process, in order to simulate the force situation of mixed particle size abrasive and single particle size abrasive during machining. Taking the spindle speed of the machine tool (A), the abrasive mass ratio (B) and the abrasive particle size ratio (C) as the research objects, the experimental parameters are analyzed and optimized using response surface methodology. To prevent abrasive splashing and reduce the grinding effect, the selected experimental parameters ranges are 400 to 600 r/min for A, 0.50 to 2.00 for B, and 1.5 to 2.5 for C. Using the surface roughness Ra of the workpiece as the response value, the Box Behnken method is used for response surface test design. Results The P-value of the variance analysis of the model experiment results is less than 0.000 1, indicating that the experimental model is highly significant. The mismatch term refers to the unexplained error in the model, with a P-value of 0.458 1, much greater than 0.050 0, indicating that the mismatch term is not significant and the regression equation fitted by the software is valid. At the same time, the multiple correlation coefficient R2 is 0.996 2, and R2Adj is 0.989 4 after verification, which is very close to 1.000 0, indicating a good fit of the model. Moreover, the surface roughness is affected by the spindle speed, abrasive mass ratio and abrasive particle size ratio to 98.94%. The results of the single factor experiment indicate that the order of influence on surface roughness Ra is the spindle speed, followed by the abrasive mass ratio and the abrasive particle size ratio. When the spindle speed is 500 r/min and the abrasive mass ratio is 1.25, the workpiece surface roughness Ra reaches the minimum value. In the case of a certain abrasive mass ratio, when the abrasive particle size ratio is 2.0 and the spindle speed is 500 r/min, the workpiece surface roughness Ra reaches its minimum value. Under the condition of constant spindle speed, when the abrasive mass ratio is 0.50 and the abrasive particle size ratio is 2.5, the workpiece surface roughness Ra reaches the maximum. However, when the abrasive particle size ratio is 2.0 and the appropriate mass ratio is 1.25, the surface roughness Ra of the workpiece can reach the minimum value. Aiming at the minimum surface roughness Ra of the workpiece, the response surface software is used to optimize the data, and the optimal process parameter combination for workpiece processing is obtained, that is, the spindle speed is 511 r/min, the abrasive mass ratio is 1.67, the abrasive particle size ratio is 1.9, and the predicted surface roughness Ra value after processing is 0.038 µm. When the workpiece is machined under the optimal process parameters, the surface roughness Ra of the workpiece decreases from the original value of 0.244 μm to the test value of 0.036 μm, and the absolute value of relative error between the two is 5.26%. Conclusions The experimental results show that the established model is effective, and the process parameters that affect the surface roughness Ra of the workpiece are in the order of spindle speed, followed by abrasive mass ratio and abrasive particle size ratio. Compared to single-abrasive magnetic particle grinding, the use of mixed abrasives can further reduce the surface roughness of the workpiece and improve its machining effect. -
表 1 加工参数
Table 1. Processing parameters
参数 规格或取值 工件尺寸 150 mm × 120 mm × 10 mm 工件材料 SUS304不锈钢 加工间隙 d / mm 1.5 加工时间 t / min 15 进给速度 vw / (m·min−1) 3 磁极头 N35永磁体,ф 20 mm 磨料填充量 m / g 1.5 表 2 Box-Behnken试验的因素、水平及编码
Table 2. Factors, levels and codes of Box-Behnken tests
水平及编码因素 主轴转速
n / (r·min−1)
A磨料质量比
R1
B磨料粒径比
R2
C−1 400 0.50 1.5 0 500 1.25 2.0 1 600 2.00 2.5 表 3 响应面试验结果
Table 3. Experimental results of response surfaces
序号 A B C 表面粗糙度 Ra / μm 1 −1 −1 0 0.083 2 1 −1 0 0.077 3 −1 1 0 0.081 4 1 1 0 0.053 5 −1 0 −1 0.072 6 1 0 −1 0.068 7 −1 0 1 0.086 8 1 0 1 0.063 9 0 −1 −1 0.056 10 0 1 −1 0.044 11 0 −1 1 0.061 12 0 1 1 0.051 13 0 0 0 0.041 14 0 0 0 0.039 15 0 0 0 0.042 表 4 方差分析结果
Table 4. Results of ANOVA
项目 平方和 自由度 均方差 F P 显著性 模型 0.0036 9 0.0004 145.6200 < 0.0001 非常显著 A 0.0005 1 0.0005 167.1100 < 0.0001 非常显著 B 0.0003 1 0.0003 103.4700 0.0002 显著 C 0.0001 1 0.0001 19.8100 0.0067 显著 AB 0.0001 1 0.0001 43.4700 0.0012 显著 AC 0.0001 1 0.0001 32.4300 0.0023 显著 BC 1.000 × 10−6 1 1.000 × 10−6 0.3593 0.5750 A2 0.0025 1 0.0025 899.6400 < 0.0001 非常显著 B2 0.0002 1 0.0002 61.1900 0.0005 显著 C2 0.0001 1 0.0001 40.7400 0.0014 显著 残差 0.0000 5 2.783 × 10−6 失拟项 9.250 × 10−6 3 3.083 × 10−6 1.32 0.4581 不显著 纯误差 4.667 × 10−6 2 2.333 × 10−6 总和 0.0037 14 R2=0.996 2 校核后RAdj2=0.989 4 -
[1] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展 [J]. 表面技术,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004LIU Wenhao, CHEN Yan, LI Wenlong, et al. Research progress of magnetic abrasive finishing technology [J]. Surface Technology,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004 [2] AHMAD S, SINGARI R, MISHRA R. Development of Al2O3-SiO2 based magnetic abrasive by sintering method and its performance on Ti-6Al-4V during magnetic abrasive finishing [J]. Transactions of the IMF,2021(99):94-101. doi: 10.1080/00202967.2021.1865644 [3] 张亚军, 赵春光, 党恒耀, 等. 列车制动系统杠杆螺栓用17Cr16Ni2不锈钢的应力腐蚀敏感性 [J]. 中国铁道科学,2022,43(1):126-133. doi: 10.3969/j.issn.1001-4632.2022.01.15ZHANG Yajun, ZHAO Chunguang, DANG Hengyao, et al. Stress corrosion susceptibility of 17Cr16Ni2 stainless steel for lever bolt of train brake system [J]. China Railway Science,2022,43(1):126-133. doi: 10.3969/j.issn.1001-4632.2022.01.15 [4] 张东阳. 基于低频交变磁场对管件内表面精密磁粒研磨工艺研究 [D]. 鞍山: 辽宁科技大学, 2022.ZHANG Dongyang. Research on precision magnetic particle grinding process for inner surface of pipe fittings based on low frequency alternating magnetic field [D]. Anshan: University of Science and Technology Liaoning, 2022. [5] XIE H J, ZOU Y H. Study on the magnetic abrasive finishing process using alternating magnetic field—discussion on the influence of current waveform variation [J]. The International Journal of Advanced Manufacturing Technology,2021,114(7):2471-2483. doi: 10.1007/s00170-021-07048-9 [6] 刘宁, 张桂香, 陈昊鑫, 等. 基于响应曲面法的磁力研磨310S不锈钢参数优化 [J]. 电镀与精饰,2023,45(6):77-83. doi: 10.3969/j.issn.1001-3849.2023.06.013LIU Ning, ZHANG Guixiang, CHEN Haoxin, et al. Parameter optimization of magnetic abrasive finishing 310S stainless steel based on response surface methodology [J]. Plating & Finishing,2023,45(6):77-83. doi: 10.3969/j.issn.1001-3849.2023.06.013 [7] 刘新龙, 陈燕, 王杰, 等. 电解-旋转超声复合磁力研磨去除TC4钛合金孔边毛刺 [J]. 电镀与涂饰,2019,38(13):680-684. doi: 10.19289/j.1004-227x.2019.13.009LIU Xinlong, CHEN Yan, WANG Jie, et al. Deburring of TC4 titanium alloy hole edge by magnetic grinding in combination with electrolysis and rotational ultrasonic vibration [J]. Electroplating & Finishing,2019,38(13):680-684. doi: 10.19289/j.1004-227x.2019.13.009 [8] 任泽, 朱永伟, 董彦辉, 等. 弹性磁极磨头磁力研磨TC4钛合金的工艺优化 [J]. 金刚石与磨料磨具工程,2023,43(2):257-264. doi: 10.13394/j.cnki.jgszz.2022.0101REN Ze, ZHU Yongwei, DONG Yanhui, et al. Process optimization of magnetic abrasive finishing of TC4 titanium alloy with elastic magnetic pole grinding head [J]. Diamond & Abrasive Engineering,2023,43(2):257-264. doi: 10.13394/j.cnki.jgszz.2022.0101 [9] 马付建, 栾诗宇, 罗奇超, 等. 超声辅助磁性磨料光整加工工艺对钛合金表面完整性的影响 [J]. 中国表面工程,2019,32(2):128-136. doi: 10.11933/j.issn.1007-9289.20181105001MA Fujian, LUAN Shiyu, LUO Qichao, et al. Effects of ultrasonic assisted magnetic abrasive finishing on surface integrity of titanium alloy [J]. China Surface Engineering,2019,32(2):128-136. doi: 10.11933/j.issn.1007-9289.20181105001 [10] PANDEY K, PANDEY P M. An integrated application of chemo-ultrasonic approach for improving surface finish of Si (100) using double disk magnetic abrasive finishing [J]. The International Journal of Advanced Manufacturing Technology,2019,103(9):3871-3886. doi: 10.1007/s00170-019-03829-5 [11] 陈晓明, 徐成宇, 季冬锋, 等. 基于混合粒径的TC4钛合金低粗糙度磁力研磨研究 [J]. 表面技术,2023,52(12):112-118,159. doi: 10.16490/j.cnki.issn.1001-3660.2023.12.010CHEN Xiaoming, XU Chengyu, JI Dongfeng, et al. Research on low roughness magnetic grinding of TC4 titanium alloy based on mixed particle size [J]. Surface Technology,2023,52(12):112-118,159. doi: 10.16490/j.cnki.issn.1001-3660.2023.12.010 [12] 郭峰, 王胜利, 王辰伟, 等. 不同粒径SiO2磨料混合对钴化学机械抛光的影响 [J]. 电镀与涂饰,2022,41(23):1695-1700. doi: 10.19289/j.1004-227x.2022.23.009GUO Feng, WANG Shengli, WANG Chenwei, et al. The effect of SiO2 abrasive mixture with different particle sizes on cobalt chemical mechanical polishing [J]. Plating & Finishing,2022,41(23):1695-1700. doi: 10.19289/j.1004-227x.2022.23.009 [13] 程海东. 管件内表面磁粒研磨中磨粒动力学仿真研究 [D]. 鞍山: 辽宁科技大学, 2022.CHENG Haidong. Simulation study of abrasive particle dynamics in magnetic abrasive finishing of inner surface of piped [D]. Anshan: University of Science and Technology Liaoning, 2022. [14] 肖阳, 孙友松, 陈光忠. 永磁场磁力研磨TC11钛合金的实验研究 [J]. 表面技术,2017,46(2):229-234. doi: 10.16490/j.cnki.issn.1001-3660.2017.02.039XIAO Yang, SUN Yousong, CHEN Guangzhong. Experimental study of magnetic abrasive finishing of TC11 titanium alloy in permanent magnetic field [J]. Surface Technology,2017,46(2):229-234. doi: 10.16490/j.cnki.issn.1001-3660.2017.02.039 [15] 张志鹏, 陈燕, 潘明诗, 等. 基于Hilbert曲线磁粒研磨轨迹均匀性实验研究 [J]. 表面技术,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037ZHANG Zhipeng, CHEN Yan, PAN Mingshi, et al. Experimental study on magnetic particle grinding uniformity based on Hilbert curve [J]. Surface Technology,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037 [16] 陈士军, 龚木联, 刘溯逸, 等. 基于响应曲面法的三元地聚合物注浆材料耐久性能研究 [J]. 硅酸盐通报,2024,43(3):938-947. doi: 10.16552/j.cnki.issn1001-1625.2024.03.006CHEN Shijun, GONG Mulian, LIU Suyi, et al. Research on durability performance of ternary geopolymer grouting materials based on response surface methodology [J]. Bulletin of the Chinese Ceramic Society,2024,43(3):938-947. doi: 10.16552/j.cnki.issn1001-1625.2024.03.006 [17] 王鹏川, 金洙吉. 铁基金刚石磁性磨料的制备及其性能研究 [J]. 表面技术,2016(45):78-83. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.013WANG Pengchuan, JIN Zhuji. Preparation and performance of ironbas-ed diamond magnetic abrasive [J]. Surface Technology,2016(45):78-83. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.013 [18] 张世学, 丁云龙, 吕旖旎, 等. 烧结法制备铁基立方氮化硼磁性磨粒及其磨削性能研究 [J]. 表面技术,2022,51(9):271-279. doi: 10.16490/j.cnki.issn.1001-3660.2022.09.000ZHANG Shixue, DING Yunlong, LV Yini, et al. Preparation of iron-based cubic boron nitride magnetic abrasive particles by sintering method and study on their grinding performance [J]. Surface Technology,2022,51(9):271-279. doi: 10.16490/j.cnki.issn.1001-3660.2022.09.000 [19] LI Z H, ZHAO Y G, LIU G X, et al. Parametric studies on finishing of AZ31B magnesium alloy with Al2O3 magnetic abrasives prepared by combining plasma molten metal powder with sprayed abrasive powder [J]. Micromachines,2022,13(9):1369. doi: 10.3390/mi13091369 [20] 梁伟, 张桂香, 张鹏, 等. 磁力研磨光整加工ZrO2陶瓷材料试验研究 [J]. 表面技术,2018,47(9):310-316. doi: 10.16490/j.cnki.issn.1001-3660.2018.09.041LIANG Wei, ZHANG Guixiang, ZHANG Peng, et al. Experimental study on magnetic abrasive finishing and polishing of ZrO2 ceramic materials [J]. Surface Technology,2018,47(9):310-316. doi: 10.16490/j.cnki.issn.1001-3660.2018.09.041 [21] 杨欢, 陈松, 张磊, 等. 脉冲电磁场辅助平面磁粒研磨加工试验 [J]. 表面技术,2022,51(2):313-321. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.031YANG Huan, CHEN Song, ZHANG Lei, et al. Experimental study on pulse electromagnetic field assisted planar magnetic abrasive finishing [J]. Surface Technology,2022,51(2):313-321. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.031 -