CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Mask R-CNN的金刚石磨盘表面形态分割与评价

索文隆 林燕芬 方从富

索文隆, 林燕芬, 方从富. 基于改进Mask R-CNN的金刚石磨盘表面形态分割与评价[J]. 金刚石与磨料磨具工程, 2025, 45(3): 416-426. doi: 10.13394/j.cnki.jgszz.2024.0080
引用本文: 索文隆, 林燕芬, 方从富. 基于改进Mask R-CNN的金刚石磨盘表面形态分割与评价[J]. 金刚石与磨料磨具工程, 2025, 45(3): 416-426. doi: 10.13394/j.cnki.jgszz.2024.0080
SUO Wenlong, LIN Yanfen, FANG Congfu. Surface morphology segmentation and evaluation of diamond lapping pad based on improved Mask R-CNN[J]. Diamond & Abrasives Engineering, 2025, 45(3): 416-426. doi: 10.13394/j.cnki.jgszz.2024.0080
Citation: SUO Wenlong, LIN Yanfen, FANG Congfu. Surface morphology segmentation and evaluation of diamond lapping pad based on improved Mask R-CNN[J]. Diamond & Abrasives Engineering, 2025, 45(3): 416-426. doi: 10.13394/j.cnki.jgszz.2024.0080

基于改进Mask R-CNN的金刚石磨盘表面形态分割与评价

doi: 10.13394/j.cnki.jgszz.2024.0080
基金项目: 国家自然科学基金面上项目(52275426);厦门市自然科学基金面上项目(3502Z20227330)。
详细信息
    作者简介:

    林燕芬,女,1982年出生,硕士,教授。主要研究方向:智能图像处理与模式识别。E-mail:linyanfen@xit.edu.cn

    通讯作者:

    方从富,男,1980 年出生,博士、教授、博士生导师。主要研究方向:智能制造与精密加工、超硬工具设计与制备技术、工具状态数字化测量与表征。E-mail:cffang@hqu.edu.cn

  • 中图分类号: TQ164;TG58;TG74

Surface morphology segmentation and evaluation of diamond lapping pad based on improved Mask R-CNN

  • 摘要: 金刚石磨盘广泛应用于各类硬脆材料的磨削加工中,磨盘表面形态对加工工件质量与磨盘磨削性能有着直接的影响。为对磨盘表面形态进行检测,提出基于改进Mask R-CNN模型的分割方法对磨盘表面图像中的磨粒、气孔进行识别与分割,并对模型进行训练与验证。结果表明:使用该方法能够实现磨盘表面图像中磨粒、气孔的识别与分割,平均准确率为78.2%。为验证该方法分割的磨粒、气孔与实际结果的差异,提出目标数量识别准确率、目标分割面积准确率、目标位置误差3个参数来评价分割效果,结果表明:磨粒、气孔的数量识别准确率分别为82.1%与93.4%,分割面积准确率分别为89.9%与95.3%,位置误差分别为3.80%与2.80%,证明该方法有效。

     

  • 图  1  Mask R-CNN模型结构

    Figure  1.  Mask R-CNN model structure

    图  2  Mask R-CNN模型改进方法示意图

    Figure  2.  Schematic diagram of Mask R-CNN model improvement method

    图  3  图像采集工具与磨盘表面图像

    Figure  3.  Image acquisition tool and lapping pad surface image

    图  4  磨盘表面磨粒和气孔图像

    Figure  4.  Images of abrasive particles and pores on surface of lapping pad

    图  5  磨盘标注图像

    Figure  5.  Lapping pad labeling image

    图  6  训练损失与学习率变化

    Figure  6.  Training loss and learning rate change

    图  7  平均准确率

    Figure  7.  Mean average precision

    图  8  磨盘表面图像与模型识别分割图像

    Figure  8.  Lapping pad surface image and model recognition segmentation image

    图  9  人工标注图像与模型识别分割图像对比

    Figure  9.  Comparison of manually labeled image and model recognition segmentation image

    图  10  人工标注图像与模型分割图像对比

    Figure  10.  Comparison of manually labered image and model segmentation image

    图  11  2种方法分割磨粒数量对比与磨粒数量识别准确率

    Figure  11.  Comparison of number of abrasive particles segmented by two methods and accuracy of number of abrasive particles recognition

    图  12  2种方法分割气孔数量对比与气孔数量识别准确率

    Figure  12.  Comparison of number of pores segmented by two methods and accuracy of recognition of number of pores

    图  13  2种方法分割磨粒面积对比与磨粒分割面积准确率

    Figure  13.  Comparison of two methods to segment abrasive particle area and accuracy of abrasive particle segmentation area

    图  14  2种方法分割气孔面积对比与气孔分割面积准确率

    Figure  14.  Comparison of pore area and accuracy of pore segmentation area by two methods

    图  15  2种方法分割的磨粒、气孔形心图

    Figure  15.  Abrasive particle and pore centroids segmented by two methods

    图  16  磨粒位置误差

    Figure  16.  Position error of abrasive particle

    图  17  气孔位置误差

    Figure  17.  Position error of pore

  • [1] 邓朝晖, 伍俏平, 张高峰, 等.新型砂轮研究进展及其展望 [J]. 中国机械工程, 2010, 21(21): 2632-2638, 2645.

    DENG Zhaohui, WU Qiaoping, ZHANG Gaofeng, et al. Recent advances and future perspectives in new type grinding wheels [J]. China Mechanical Engineering, 2010, 21(21): 2632-2638, 2645.
    [2] HADAD M, SHARBATI A. Thermal aspects of environmentally friendly-MQL grinding process [J]. Procedia CIRP,2016,40:509-515. doi: 10.1016/j.procir.2016.01.125
    [3] MARKOPOULOS A P. Finite element method in machining processes [M]. London: Springer, 2013.
    [4] 徐西鹏, 黄辉, 胡中伟, 等. 磨粒工具的研究现状及发展趋势 [J]. 机械工程学报,2022,58(15):2-20. doi: 10.3901/JME.2022.15.002

    XU Xipeng, HUANG Hui, HU Zhongwei, et al. Development of abrasive tools: State-of-the-art and prospectives [J]. Journal of Mechanical Engineering,2022,58(15):2-20. doi: 10.3901/JME.2022.15.002
    [5] 陈光军, 韩松鑫, 潘佳琦, 等. 切削加工表面粗糙度影响因素及预测建模综述 [J]. 机床与液压,2020,48(13):185-188. doi: 10.3969/j.issn.1001-3881.2020.13.040

    CHEN Guangjun, HAN Songxin, PAN Jiaqi, et al. Review on the influence factors and predictive modeling of surface roughness in machining [J]. Machine Tool & Hydraulics,2020,48(13):185-188. doi: 10.3969/j.issn.1001-3881.2020.13.040
    [6] FAN K C, LEE M Z, MOU J I. On-line non-contact system for grinding wheel wear measurement [J]. The International Journal of Advanced Manufacturing Technology,2002,19(1):14-22. doi: 10.1007/PL00003964
    [7] LACHANCE S, WARKENTIN A, BAUER R. Development of an automated system for measuring grinding wheel wear flats [J]. Journal of Manufacturing Systems,2003,22(2):130-135. doi: 10.1016/S0278-6125(03)90010-0
    [8] 杨栖凤, 崔长彩, 黄国钦. 金刚石砂轮表面二维形貌全场测量和分析 [J]. 华侨大学学报(自然科学版),2018,39(4):479-484. doi: 10.11830/ISSN.1000-5013.201711013

    YANG Qifeng, CUI Changcai, HUANG Guoqin. Measurement and analysis of two-dimensional surface topography of whole grinding wheel [J]. Journal of Huaqiao University(Natural Science),2018,39(4):479-484. doi: 10.11830/ISSN.1000-5013.201711013
    [9] 刘明宇, 佃松宜. 基于机器视觉的金刚线表面质量检测 [J]. 四川大学学报(自然科学版),2020,57(5):920-926. doi: 10.3969/j.issn.0490-6756.2020.05.015

    LIU Mingyu, DIAN Songyi. Surface quality detection of diamond wire based on machine vision [J]. Journal of Sichuan University(Natural Science Edition),2020,57(5):920-926. doi: 10.3969/j.issn.0490-6756.2020.05.015
    [10] 赵玉康, 毕文波, 葛培琪. 电镀金刚石线锯表面磨粒分布密度的多相机视觉检测 [J]. 金刚石与磨料磨具工程,2021,41(2):64-68. doi: 10.13394/j.cnki.jgszz.2021.2.0011

    ZHAO Yukang, BI Wenbo, GE Peiqi. Multi-camera visual inspection of abrasives distribution density on electroplated diamond wire saw surface [J]. Diamond & Abrasives Engineering,2021,41(2):64-68. doi: 10.13394/j.cnki.jgszz.2021.2.0011
    [11] YOU F Y, ZHOU W, WANG X, et al. Systematic monitoring and evaluating the wear of alumina wheel when grinding the workpiece of Cr12 [J]. Complexity,2021(1):6665043. doi: 10.1155/2021/6665043
    [12] 李弘扬, 方从富. 基于K-Means聚类与凸包检测的金刚石磨粒分割与评价 [J]. 金刚石与磨料磨具工程,2023,43(2):188-195. doi: 10.13394/j.cnki.jgszz.2022.0099

    LI Hongyang, FANG Congfu. Segmentation and evaluation of diamond abrasive grains based on K-Means clustering and convex hull detection [J]. Diamond & Abrasives Engineering,2023,43(2):188-195. doi: 10.13394/j.cnki.jgszz.2022.0099
    [13] 胡伟栋, 王占奎, 董彦辉, 等. 基于深度学习的固结磨料研磨垫表面形态表征 [J]. 金刚石与磨料磨具工程,2022,42(2):186-192. doi: 10.13394/j.cnki.jgszz.2021.0096

    HU Weidong, WANG Zhankui, DONG Yanhui, et al. Surface morphology characterization of fixed abrasive lapping pad based on deep learning [J]. Diamond & Abrasives Engineering,2022,42(2):186-192. doi: 10.13394/j.cnki.jgszz.2021.0096
    [14] 谢运鸿, 孙钊, 丁志丹, 等. 基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取 [J]. 北京林业大学学报,2024,46(3):153-166. doi: 10.12171/j.1000-1522.20210343

    XIE Yunhong, SUN Zhao, DING Zhidan, et al. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning [J]. Journal of Beijing Forestry University,2024,46(3):153-166. doi: 10.12171/j.1000-1522.20210343
    [15] 张丽媛, 赵海蓉, 何巍, 等. 融合全局-局部注意模块的Mask R-CNN膝关节囊肿检测方法 [J]. 图学学报,2023,44(6):1183-1190. doi: 10.11996/JG.j.2095-302X.2023061183

    ZHANG Liyuan, ZHAO Hairong, HE Wei, et al. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics,2023,44(6):1183-1190. doi: 10.11996/JG.j.2095-302X.2023061183
    [16] 杨智宏, 贺石中, 冯伟, 等. 基于Mask R-CNN网络的磨损颗粒智能识别与应用 [J]. 摩擦学学报,2021,41(1):105-114. doi: 10.16078/j.tribology.2020020

    YANG Zhihong, HE Shizhong, FENG Wei, et al. Intelligentidentification of wear particles based on Mask R-CNN network and application [J]. Tribology,2021,41(1):105-114. doi: 10.16078/j.tribology.2020020
    [17] 肖潇. 基于深度学习的遥感图像处理系统的设计与实现 [D]. 北京: 北京邮电大学, 2019.

    XIAO Xiao. Design and implementation of remote semsing image processing system based on deep learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
    [18] AMIRGAN B, ERENER A. Semantic segmentation of satellite images with different building types using deep learning methods [J]. Remote Sensing Applications: Society and Environment,2024,34:101176. doi: 10.1016/j.rsase.2024.101176
    [19] JIA P Y, CHEN C, ZHANG D L, et al. Semantic segmentation of deep learning remote sensing images based on band combination principle: Application in urban planning and land use [J]. Computer Communications,2024,217:97-106. doi: 10.1016/j.comcom.2024.01.032
  • 加载中
图(17)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  312
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-05
  • 修回日期:  2024-07-24
  • 录用日期:  2024-07-31
  • 网络出版日期:  2024-07-31
  • 刊出日期:  2025-06-20

目录

    /

    返回文章
    返回