[1] |
邓朝晖, 伍俏平, 张高峰, 等.新型砂轮研究进展及其展望 [J]. 中国机械工程, 2010, 21(21): 2632-2638, 2645.DENG Zhaohui, WU Qiaoping, ZHANG Gaofeng, et al. Recent advances and future perspectives in new type grinding wheels [J]. China Mechanical Engineering, 2010, 21(21): 2632-2638, 2645.
|
[2] |
HADAD M, SHARBATI A. Thermal aspects of environmentally friendly-MQL grinding process [J]. Procedia CIRP,2016,40:509-515. doi: 10.1016/j.procir.2016.01.125
|
[3] |
MARKOPOULOS A P. Finite element method in machining processes [M]. London: Springer, 2013.
|
[4] |
徐西鹏, 黄辉, 胡中伟, 等. 磨粒工具的研究现状及发展趋势 [J]. 机械工程学报,2022,58(15):2-20. doi: 10.3901/JME.2022.15.002XU Xipeng, HUANG Hui, HU Zhongwei, et al. Development of abrasive tools: State-of-the-art and prospectives [J]. Journal of Mechanical Engineering,2022,58(15):2-20. doi: 10.3901/JME.2022.15.002
|
[5] |
陈光军, 韩松鑫, 潘佳琦, 等. 切削加工表面粗糙度影响因素及预测建模综述 [J]. 机床与液压,2020,48(13):185-188. doi: 10.3969/j.issn.1001-3881.2020.13.040CHEN Guangjun, HAN Songxin, PAN Jiaqi, et al. Review on the influence factors and predictive modeling of surface roughness in machining [J]. Machine Tool & Hydraulics,2020,48(13):185-188. doi: 10.3969/j.issn.1001-3881.2020.13.040
|
[6] |
FAN K C, LEE M Z, MOU J I. On-line non-contact system for grinding wheel wear measurement [J]. The International Journal of Advanced Manufacturing Technology,2002,19(1):14-22. doi: 10.1007/PL00003964
|
[7] |
LACHANCE S, WARKENTIN A, BAUER R. Development of an automated system for measuring grinding wheel wear flats [J]. Journal of Manufacturing Systems,2003,22(2):130-135. doi: 10.1016/S0278-6125(03)90010-0
|
[8] |
杨栖凤, 崔长彩, 黄国钦. 金刚石砂轮表面二维形貌全场测量和分析 [J]. 华侨大学学报(自然科学版),2018,39(4):479-484. doi: 10.11830/ISSN.1000-5013.201711013YANG Qifeng, CUI Changcai, HUANG Guoqin. Measurement and analysis of two-dimensional surface topography of whole grinding wheel [J]. Journal of Huaqiao University(Natural Science),2018,39(4):479-484. doi: 10.11830/ISSN.1000-5013.201711013
|
[9] |
刘明宇, 佃松宜. 基于机器视觉的金刚线表面质量检测 [J]. 四川大学学报(自然科学版),2020,57(5):920-926. doi: 10.3969/j.issn.0490-6756.2020.05.015LIU Mingyu, DIAN Songyi. Surface quality detection of diamond wire based on machine vision [J]. Journal of Sichuan University(Natural Science Edition),2020,57(5):920-926. doi: 10.3969/j.issn.0490-6756.2020.05.015
|
[10] |
赵玉康, 毕文波, 葛培琪. 电镀金刚石线锯表面磨粒分布密度的多相机视觉检测 [J]. 金刚石与磨料磨具工程,2021,41(2):64-68. doi: 10.13394/j.cnki.jgszz.2021.2.0011ZHAO Yukang, BI Wenbo, GE Peiqi. Multi-camera visual inspection of abrasives distribution density on electroplated diamond wire saw surface [J]. Diamond & Abrasives Engineering,2021,41(2):64-68. doi: 10.13394/j.cnki.jgszz.2021.2.0011
|
[11] |
YOU F Y, ZHOU W, WANG X, et al. Systematic monitoring and evaluating the wear of alumina wheel when grinding the workpiece of Cr12 [J]. Complexity,2021(1):6665043. doi: 10.1155/2021/6665043
|
[12] |
李弘扬, 方从富. 基于K-Means聚类与凸包检测的金刚石磨粒分割与评价 [J]. 金刚石与磨料磨具工程,2023,43(2):188-195. doi: 10.13394/j.cnki.jgszz.2022.0099LI Hongyang, FANG Congfu. Segmentation and evaluation of diamond abrasive grains based on K-Means clustering and convex hull detection [J]. Diamond & Abrasives Engineering,2023,43(2):188-195. doi: 10.13394/j.cnki.jgszz.2022.0099
|
[13] |
胡伟栋, 王占奎, 董彦辉, 等. 基于深度学习的固结磨料研磨垫表面形态表征 [J]. 金刚石与磨料磨具工程,2022,42(2):186-192. doi: 10.13394/j.cnki.jgszz.2021.0096HU Weidong, WANG Zhankui, DONG Yanhui, et al. Surface morphology characterization of fixed abrasive lapping pad based on deep learning [J]. Diamond & Abrasives Engineering,2022,42(2):186-192. doi: 10.13394/j.cnki.jgszz.2021.0096
|
[14] |
谢运鸿, 孙钊, 丁志丹, 等. 基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取 [J]. 北京林业大学学报,2024,46(3):153-166. doi: 10.12171/j.1000-1522.20210343XIE Yunhong, SUN Zhao, DING Zhidan, et al. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning [J]. Journal of Beijing Forestry University,2024,46(3):153-166. doi: 10.12171/j.1000-1522.20210343
|
[15] |
张丽媛, 赵海蓉, 何巍, 等. 融合全局-局部注意模块的Mask R-CNN膝关节囊肿检测方法 [J]. 图学学报,2023,44(6):1183-1190. doi: 10.11996/JG.j.2095-302X.2023061183ZHANG Liyuan, ZHAO Hairong, HE Wei, et al. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics,2023,44(6):1183-1190. doi: 10.11996/JG.j.2095-302X.2023061183
|
[16] |
杨智宏, 贺石中, 冯伟, 等. 基于Mask R-CNN网络的磨损颗粒智能识别与应用 [J]. 摩擦学学报,2021,41(1):105-114. doi: 10.16078/j.tribology.2020020YANG Zhihong, HE Shizhong, FENG Wei, et al. Intelligentidentification of wear particles based on Mask R-CNN network and application [J]. Tribology,2021,41(1):105-114. doi: 10.16078/j.tribology.2020020
|
[17] |
肖潇. 基于深度学习的遥感图像处理系统的设计与实现 [D]. 北京: 北京邮电大学, 2019.XIAO Xiao. Design and implementation of remote semsing image processing system based on deep learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
[18] |
AMIRGAN B, ERENER A. Semantic segmentation of satellite images with different building types using deep learning methods [J]. Remote Sensing Applications: Society and Environment,2024,34:101176. doi: 10.1016/j.rsase.2024.101176
|
[19] |
JIA P Y, CHEN C, ZHANG D L, et al. Semantic segmentation of deep learning remote sensing images based on band combination principle: Application in urban planning and land use [J]. Computer Communications,2024,217:97-106. doi: 10.1016/j.comcom.2024.01.032
|