Temperature simulation analysis and wear experimental of diamond abrasive grains cutting steel mixed materials
-
摘要: 海上平台导管架桩基一般采用钢混灌浆结构,在利用金刚石串珠绳切割其海面以上部分时,为确保单根串珠绳完成单一切口的切割作业,必须选择合理的冷却方案。本研究基于傅里叶导热定律建立金刚石磨粒切削温度场数值模型,该温度场的温度随切削工艺参数的增大而升高,随介质参数的增大而降低;利用AdvantEdge有限元切削仿真技术建立金刚石磨粒切削钢混材料的动力学仿真模型,探究切削过程中不同冷却方式对切削区温升和磨粒磨损的影响;搭建金刚石串珠绳切削实验台,根据实际工况,选择了干切削、低温喷雾和高压水冷3种切削方式,对仿真结果进行实验验证。结果表明:低温喷雾冷却方案的冷却效果最优,与干切削相比,试验后单颗串珠磨粒的完整度可提高13百分点,磨粒脱落率可降低15百分点。因此,在导管架平台桩基切割工况下,选择低温喷雾冷却的方式,更有利于串珠绳切削效率和使用寿命的提升。Abstract:
Objectives Diamond wire saw cutting, being environmentally friendly and unaffected by water depth, structure material, shape, or size, has become the preferred method for dismantling large oceanic structures. However, when cutting jackets above the water surface, the elevated temperatures in the cutting zone can lead to excessive wear on the wire saw and even result in cutting failure. To address this issue, this paper integrates theoretical, simulation, and experimental analyses to examine the impact of various cooling conditions on cutting zone temperature and tool wear. Furthermore, it identifies an optimal cooling method for the dismantling process of jackets using diamond wire saws on the sea surface. Methods First, based on the principles of thermal conductivity, a theoretical model of the temperature field in the cutting zone of diamond grains is developed to analyze the influence of cutting and media parameters on heat generation. Next, using AdvantEdge simulation software, a kinetic simulation model of diamond grit cutting reinforced concrete materials is established under various working conditions, including dry cutting, low-temperature air cooling, high-pressure water cooling, liquid nitrogen cooling, and low-temperature spray cooling. The temperature rise in the cutting zones under different cooling methods is analyzed. Finally, experimental cutting tests using diamond wire saws on reinforced concrete material workpieces are conducted to investigate the failure behavior and wear rate of the wire saws under different cooling conditions. The optimal cooling method is then identified and validates the simulation results. Results (1) According to the theoretical model of the temperature field in the cutting zone, the surface temperature increases with higher cutting parameters such as feed speed, cutting speed, and cutting time, while it decreases with the increase of medium parameters such as specific heat capacity and thermal conductivity. (2) The cutting simulation study indicates that under dry cutting conditions, the temperature in the cutting zone exceeds the diamond carbonization threshold, significantly compromising the cutting performance of the wire saw. In contrast, all four cooling methods maintain the cutting zone temperature below the diamond carbonization threshold, with low-temperature spray cooling demonstrating the most effective reduction in tool wear. (3) By measuring changes in the outer diameter of the beads on the wire saw, the lowest wear rate is observed under low-temperature spray cooling, which further validates the findings of the cutting simulation study. (4) Scanning electron microscope analysis of the worn diamond abrasive grains reveals four distinct behaviors of wear: intact abrasive grains, abrasive edge wear, surface fragmentation, and abrasive grain detachment. (5) Compared to dry cutting, low-temperature spray cooling increases the percentage of intact abrasive grains from 18% to 31% and reduces the abrasive grain detachment rate from 39% to 24%, thereby significantly enhancing cutting efficiency and extending the service life during diamond wire saw cutting of reinforced concrete materials. Conclusions When dismantling platform structures on the sea surface using diamond wire saws, low-temperature spray cooling is prioritized due to its minimal temperature rise in the cutting zone and the lowest bead wear rate. This approach significantly enhances cutting efficiency and extends the service life of the diamond wire saw. -
Key words:
- diamond beaded rope /
- abrasive grains /
- cooling method /
- cutting temperature /
- abrasive grain failure
-
表 1 材料的属性参数表
Table 1. Property parameters of materials
材料 弹性模量
E / MPa泊松比
v比热容
c / (J·kg−1·℃−1)导热系数
λ / (W·m−1·K−1)热膨胀系数
α / (m·k−1)金刚石 1.10 × 106 0.07 399.84 2 000 1.2 × 10−6 C40 3.25 × 104 0.30 970.00 1.28 1.0 × 10−5 表 2 C40钢筋混凝土材料的本构模型参数
Table 2. Parameters of intrinsic model of C40 material
参数 取值 初始屈服应力 A1 / MPa 335 应变硬化系数 B1 / MPa 1410.3 材料应变率强化参数 C1 0.035 硬化指数 n 0.614 热软化指数 m 1.67 表 3 冷却方式的温度与导热系数关系表
Table 3. Relationship between temperature and heat transfer coefficient for cooling methods
冷却方式 温度 T / ℃ 导热系数 λ / (W·m−1·K−1) 空气 −20 0.0229 −40 0.0214 −60 0.0198 −80 0.0182 −100 0.0166 水 0 0.5557 5 0.5677 10 0.5787 20 0.5980 40 0.6284 液氮 −150 0.0502 −170 0.0990 −200 0.1508 −220 0.2087 −250 0.3670 表 4 切削力仿真结果统计表
Table 4. Statistics of cutting force simulation results
冷却方式 Fx / N Fy / N Fz / N 干切削 4.1 0.14 2.5 低温风冷却 3.6 0.05 2.5 高压水冷却 3.5 0.08 2.4 液氮冷却 3.4 0.02 2.3 低温喷雾冷却 3.5 0.05 2.3 表 5 烧结式金刚石串珠绳参数表
Table 5. Parameters of sintered diamond beaded ropes
参数 取值 串珠直径 d / mm ϕ11.5 每米串珠个数 N / 个 40 磨粒粒度 / 目 40~50 绳长 l / m 2.95 表 6 实验工件的组成成分和性能参数
Table 6. Composition and performance parameters of experimental workpieces
类型 型号 成分 抗压强度 σ / MPa Ⅰ级钢筋 Q235 Fe、C、Mn、Si 235 混凝土 C40 水泥、水、砂、碎石 40 表 7 串珠绳实验切削参数
Table 7. Experimental cutting parameters of beaded rope
实验组号 切削速度
v / (m·s−1)进给速度
vf / (mm·min−1)张紧力
F / N1 24 9 2100 2 26 9 2300 3 28 9 2500 4 24 12 2300 5 26 12 2500 6 28 12 2100 7 24 15 2500 8 26 15 2100 9 28 15 2300 表 8 实测温度与仿真温度表
Table 8. Measured and simulated temperature table
冷却方式 切削区的最高温度 T / ℃ 误差 ε / % 仿真值 实验值 干切削 880 847 3.90 低温喷雾冷却 560 532 5.26 高压水冷却 610 585 4.27 -
[1] CHENG J C P, TAN Y, SONG Y Z, et al. A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options [J]. Visualization in Engineering,2017,5(1):12. doi: 10.1186/s40327-017-0053-2 [2] TAN Y, SONG Y Z, LIU X, et al. A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms [J]. Automation in Construction,2017,79:19-30. doi: 10.1016/j.autcon.2017.02.008 [3] KOLIAN S R, GODEC M, SAMMARCO P W. Alternate uses of retired oil and gas platforms in the Gulf of Mexico [J]. Ocean & Coastal Management,2019,167:52-59. doi: 10.1016/j.ocecoaman.2018.10.002 [4] VIDAL P D C J, GONZÁLEZ M O A, VASCONCELOS R M D, et al. Decommissioning of offshore oil and gas platforms: A systematic literature review of factors involved in the process [J]. Ocean Engineering,2022,255:111428. doi: 10.1016/j.oceaneng.2022.111428 [5] 石尚熠. 基于模糊贝叶斯网络的平台水下结构拆除切割方式的风险分析 [D]. 天津: 天津大学, 2021.SHI Shangyi. Risk assessment of cutting methods for offshore structures removal based on fuzzy Bayesian network [D]. Tianjin: Tianjin University, 2021. [6] JANJUA S Y, KHAN M R. Environmental implications of offshore oil and gas decommissioning options: An eco-efficiency assessment approach [J]. Environment, Development and Sustainability,2023,25(11):12915-12944. doi: 10.1007/s10668-022-02595-x [7] BULL A S, LOVE M S. Worldwide oil and gas platform decommissioning: A review of practices and reefing options [J]. Ocean & Coastal Management,2019,168:274-306. [8] TANG Q C, YIN S H, CHEN F J, et al. New technology for cutting ferrous metal with diamond tools [J]. Diamond and Related Materials,2018,88:32-42. doi: 10.1016/j.diamond.2018.06.022 [9] ZHANG L, SUN Y Q, WANG G, et al. Research on MD simulation for diamond tool cutting iron [J]. Molecular Simulation,2021,47(1):46-57. doi: 10.1080/08927022.2020.1866182 [10] 陈冀渝. 金刚石串珠绳锯的冷却技术 [J]. 石材,2005(9):24-25. doi: 10.3969/j.issn.1005-3352.2005.09.010CHEN Jiyu. Cooling technology of diamond beaded rope saw [J]. Stone,2005(9):24-25. doi: 10.3969/j.issn.1005-3352.2005.09.010 [11] LAN Z, SUN Y Q, WANG L Q, et al. Molecular dynamics simulation of diamond cutting iron with water lubrication [J]. Journal of Physics: Conference Series, 2021,1748(6):062048. doi: 10.1088/1742-6596/1748/6/062048 [12] 刘志峰, 张崇高, 任家隆. 干切削加工技术及应用 [M]. 北京: 机械工业出版社, 2005.LIU Zhifeng, ZHANG Chonggao, REN Jialong. Dry cutting machining technology and application [M]. Beijing: China Machine Press, 2005. [13] RAHMAN M, SENTHIL K A, SALAM M U. Experimental evaluation on the effect of minimal quantities of lubricant in milling [J]. International Journal of Machine Tools and Manufacture,2002,42(5):539-547. doi: 10.1016/S0890-6955(01)00160-2 [14] PUŠAVEC F, GRGURAŠ D, KOCH M, et al. Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling [J]. CIRP Annals,2019,68(1):73-76. doi: 10.1016/j.cirp.2019.03.016 [15] LI C, XU J Y, CHEN M, et al. Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling [J]. Wear,2019,426:1616-1623. doi: 10.1016/j.wear.2019.01.005 [16] AN Q L, FU Y C, XU J H. The application of cryogenic pneumatic mist jet impinging in high-speed milling of Ti-6Al-4V [M]//Advances in Machining & Manufacturing Technology VIII. Stafa: Trans Tech Publications Ltd., 2006: 244-248. [17] GÜNAY M, KORKMAZ M E, YAŞAR N. Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments [J]. Journal of Manufacturing Processes,2020,56:678-687. doi: 10.1016/j.jmapro.2020.05.031 [18] LV D S, XU J H, DING W F, et al. Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling [J]. Journal of Materials Processing Technology,2016,229:641-650. doi: 10.1016/j.jmatprotec.2015.10.020 [19] LIU E L, WANG R Y, ZHANG Y, et al. Tool wear analysis of cutting Ti-5553 with uncoated carbide tool under liquid nitrogen cooling condition using tool wear maps [J]. Journal of Manufacturing Processes,2021,68:877-887. doi: 10.1080/10584587.2022.2065572 [20] PEI S H, XUE F, ZHOU Y F, et al. Effects of cryogenic gas jet cooling on milling surface roughness and tool life for GH4169 alloy additive manufacturing parts [J]. Journal of Manufacturing Processes,2023,86:266-281. doi: 10.1016/j.jmapro.2022.12.062 [21] 李瑞. ±400kV换流变阀侧强制水冷套管的运行参数对温度的影响机理 [D]. 北京: 华北电力大学, 2022.LI Rui. Influence mechanism of ±400kV valve side forced cooling bushing’s operating parameters on temperature [D]. Beijing: North China Electric Power University, 2022. [22] 王大鹏, 许卫士, 李鸿运. 海上风电导管架结构与桩基灌浆连接施工工艺 [J]. 海洋开发与管理,2018,35(S1):88-91. doi: 10.3969/j.issn.1005-9857.2018.z1.017WANG Dapeng, XU Weishi, LI Hongyun. Construction process of offshore wind power conduit rack structure connected with pile foundation grouting [J]. Ocean Development and Management,2018,35(S1):88-91. doi: 10.3969/j.issn.1005-9857.2018.z1.017 [23] HUANG Z P, GAO L H, WANG Y W, et al. Determination of the Johnson-cook constitutive model parameters of materials by cluster global optimization algorithm [J]. Journal of Materials Engineering and Performance,2016,25(9):4099-4107. doi: 10.1007/s11665-016-2178-1 -