CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石磨粒切削钢混材料的温度仿真分析与磨损实验

韦敏 史永晋 郭子航

韦敏, 史永晋, 郭子航. 金刚石磨粒切削钢混材料的温度仿真分析与磨损实验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 342-351. doi: 10.13394/j.cnki.jgszz.2024.0128
引用本文: 韦敏, 史永晋, 郭子航. 金刚石磨粒切削钢混材料的温度仿真分析与磨损实验[J]. 金刚石与磨料磨具工程, 2025, 45(3): 342-351. doi: 10.13394/j.cnki.jgszz.2024.0128
WEI Min, SHI Yongjin, GUO Zihang. Temperature simulation analysis and wear experimental of diamond abrasive grains cutting steel mixed materials[J]. Diamond & Abrasives Engineering, 2025, 45(3): 342-351. doi: 10.13394/j.cnki.jgszz.2024.0128
Citation: WEI Min, SHI Yongjin, GUO Zihang. Temperature simulation analysis and wear experimental of diamond abrasive grains cutting steel mixed materials[J]. Diamond & Abrasives Engineering, 2025, 45(3): 342-351. doi: 10.13394/j.cnki.jgszz.2024.0128

金刚石磨粒切削钢混材料的温度仿真分析与磨损实验

doi: 10.13394/j.cnki.jgszz.2024.0128
详细信息
    作者简介:

    韦敏,男,1983年生,在读博士,高级工程师。主要研究方向:海上油气开发及管理。E-mail:weimin.slyt@sinopec.com

  • 中图分类号: TE952; TG58; TG74

Temperature simulation analysis and wear experimental of diamond abrasive grains cutting steel mixed materials

  • 摘要: 海上平台导管架桩基一般采用钢混灌浆结构,在利用金刚石串珠绳切割其海面以上部分时,为确保单根串珠绳完成单一切口的切割作业,必须选择合理的冷却方案。本研究基于傅里叶导热定律建立金刚石磨粒切削温度场数值模型,该温度场的温度随切削工艺参数的增大而升高,随介质参数的增大而降低;利用AdvantEdge有限元切削仿真技术建立金刚石磨粒切削钢混材料的动力学仿真模型,探究切削过程中不同冷却方式对切削区温升和磨粒磨损的影响;搭建金刚石串珠绳切削实验台,根据实际工况,选择了干切削、低温喷雾和高压水冷3种切削方式,对仿真结果进行实验验证。结果表明:低温喷雾冷却方案的冷却效果最优,与干切削相比,试验后单颗串珠磨粒的完整度可提高13百分点,磨粒脱落率可降低15百分点。因此,在导管架平台桩基切割工况下,选择低温喷雾冷却的方式,更有利于串珠绳切削效率和使用寿命的提升。

     

  • 图  1  金刚石绳锯水面以上切割作业

    Figure  1.  Diamond rope saws for cutting operations above water

    图  2  三维导热微分图

    Figure  2.  Three-dimensional thermal conductivity differential diagram

    图  3  金刚石磨粒三维切削仿真模型

    Figure  3.  3D cutting simulation model

    图  4  局部冷却源界面设置

    Figure  4.  Local cooling source interface settings

    图  5  干切削仿真的温度场分布

    Figure  5.  Temperature field distribution for dry cutting simulation

    图  6  磨粒温度仿真云图

    Figure  6.  Temperature simulation cloud of abrasive grains

    图  7  温度仿真结果

    Figure  7.  Temperature simulation results

    图  8  干切削下几何模型的压力场分布三维云图

    Figure  8.  3D cloud map of pressure field distribution for geometric modeling under dry cutting

    图  9  串珠绳切削实验平台

    Figure  9.  Experimental platform for beaded rope cutting

    图  10  低温水雾化喷嘴与雾化效果图

    Figure  10.  Low-temperature water atomisation nozzle and atomisation effect diagram

    图  11  串珠平均直径随时间变化曲线

    Figure  11.  Curve of average diameter of beads over time

    图  12  串珠直径变化量

    Figure  12.  Amount of change in bead diameter

    图  13  扫描电镜下磨粒微观形貌

    Figure  13.  Microscopic morphology of abrasive grains under scanning electron microscopy

    图  14  金刚石磨粒磨损形式占比分布图

    Figure  14.  Distribution of diamond abrasive wear forms by percentage

    表  1  材料的属性参数表

    Table  1.   Property parameters of materials

    材料 弹性模量
    E / MPa
    泊松比
    v
    比热容
    c / (J·kg−1·℃−1)
    导热系数
    λ / (W·m−1·K−1)
    热膨胀系数
    α / (m·k−1)
    金刚石 1.10 × 106 0.07 399.84 2 000 1.2 × 10−6
    C40 3.25 × 104 0.30 970.00 1.28 1.0 × 10−5
    下载: 导出CSV

    表  2  C40钢筋混凝土材料的本构模型参数

    Table  2.   Parameters of intrinsic model of C40 material

    参数 取值
    初始屈服应力 A1 / MPa 335
    应变硬化系数 B1 / MPa 1410.3
    材料应变率强化参数 C1 0.035
    硬化指数 n 0.614
    热软化指数 m 1.67
    下载: 导出CSV

    表  3  冷却方式的温度与导热系数关系表

    Table  3.   Relationship between temperature and heat transfer coefficient for cooling methods

    冷却方式 温度 T / ℃ 导热系数 λ / (W·m−1·K−1
    空气−200.0229
    −400.0214
    −600.0198
    −800.0182
    −1000.0166
    00.5557
    50.5677
    100.5787
    200.5980
    400.6284
    液氮−1500.0502
    −1700.0990
    −2000.1508
    −2200.2087
    −2500.3670
    下载: 导出CSV

    表  4  切削力仿真结果统计表

    Table  4.   Statistics of cutting force simulation results

    冷却方式 Fx / N Fy / N Fz / N
    干切削 4.1 0.14 2.5
    低温风冷却 3.6 0.05 2.5
    高压水冷却 3.5 0.08 2.4
    液氮冷却 3.4 0.02 2.3
    低温喷雾冷却 3.5 0.05 2.3
    下载: 导出CSV

    表  5  烧结式金刚石串珠绳参数表

    Table  5.   Parameters of sintered diamond beaded ropes

    参数 取值
    串珠直径 d / mm ϕ11.5
    每米串珠个数 N / 个 40
    磨粒粒度 / 目 40~50
    绳长 l / m 2.95
    下载: 导出CSV

    表  6  实验工件的组成成分和性能参数

    Table  6.   Composition and performance parameters of experimental workpieces

    类型 型号 成分 抗压强度 σ / MPa
    Ⅰ级钢筋 Q235 Fe、C、Mn、Si 235
    混凝土 C40 水泥、水、砂、碎石 40
    下载: 导出CSV

    表  7  串珠绳实验切削参数

    Table  7.   Experimental cutting parameters of beaded rope

    实验组号 切削速度
    v / (m·s−1)
    进给速度
    vf / (mm·min−1)
    张紧力
    F / N
    1 24 9 2100
    2 26 9 2300
    3 28 9 2500
    4 24 12 2300
    5 26 12 2500
    6 28 12 2100
    7 24 15 2500
    8 26 15 2100
    9 28 15 2300
    下载: 导出CSV

    表  8  实测温度与仿真温度表

    Table  8.   Measured and simulated temperature table

    冷却方式 切削区的最高温度 T / ℃ 误差 ε / %
    仿真值 实验值
    干切削 880 847 3.90
    低温喷雾冷却 560 532 5.26
    高压水冷却 610 585 4.27
    下载: 导出CSV
  • [1] CHENG J C P, TAN Y, SONG Y Z, et al. A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options [J]. Visualization in Engineering,2017,5(1):12. doi: 10.1186/s40327-017-0053-2
    [2] TAN Y, SONG Y Z, LIU X, et al. A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms [J]. Automation in Construction,2017,79:19-30. doi: 10.1016/j.autcon.2017.02.008
    [3] KOLIAN S R, GODEC M, SAMMARCO P W. Alternate uses of retired oil and gas platforms in the Gulf of Mexico [J]. Ocean & Coastal Management,2019,167:52-59. doi: 10.1016/j.ocecoaman.2018.10.002
    [4] VIDAL P D C J, GONZÁLEZ M O A, VASCONCELOS R M D, et al. Decommissioning of offshore oil and gas platforms: A systematic literature review of factors involved in the process [J]. Ocean Engineering,2022,255:111428. doi: 10.1016/j.oceaneng.2022.111428
    [5] 石尚熠. 基于模糊贝叶斯网络的平台水下结构拆除切割方式的风险分析 [D]. 天津: 天津大学, 2021.

    SHI Shangyi. Risk assessment of cutting methods for offshore structures removal based on fuzzy Bayesian network [D]. Tianjin: Tianjin University, 2021.
    [6] JANJUA S Y, KHAN M R. Environmental implications of offshore oil and gas decommissioning options: An eco-efficiency assessment approach [J]. Environment, Development and Sustainability,2023,25(11):12915-12944. doi: 10.1007/s10668-022-02595-x
    [7] BULL A S, LOVE M S. Worldwide oil and gas platform decommissioning: A review of practices and reefing options [J]. Ocean & Coastal Management,2019,168:274-306.
    [8] TANG Q C, YIN S H, CHEN F J, et al. New technology for cutting ferrous metal with diamond tools [J]. Diamond and Related Materials,2018,88:32-42. doi: 10.1016/j.diamond.2018.06.022
    [9] ZHANG L, SUN Y Q, WANG G, et al. Research on MD simulation for diamond tool cutting iron [J]. Molecular Simulation,2021,47(1):46-57. doi: 10.1080/08927022.2020.1866182
    [10] 陈冀渝. 金刚石串珠绳锯的冷却技术 [J]. 石材,2005(9):24-25. doi: 10.3969/j.issn.1005-3352.2005.09.010

    CHEN Jiyu. Cooling technology of diamond beaded rope saw [J]. Stone,2005(9):24-25. doi: 10.3969/j.issn.1005-3352.2005.09.010
    [11] LAN Z, SUN Y Q, WANG L Q, et al. Molecular dynamics simulation of diamond cutting iron with water lubrication [J]. Journal of Physics: Conference Series, 2021,1748(6):062048. doi: 10.1088/1742-6596/1748/6/062048
    [12] 刘志峰, 张崇高, 任家隆. 干切削加工技术及应用 [M]. 北京: 机械工业出版社, 2005.

    LIU Zhifeng, ZHANG Chonggao, REN Jialong. Dry cutting machining technology and application [M]. Beijing: China Machine Press, 2005.
    [13] RAHMAN M, SENTHIL K A, SALAM M U. Experimental evaluation on the effect of minimal quantities of lubricant in milling [J]. International Journal of Machine Tools and Manufacture,2002,42(5):539-547. doi: 10.1016/S0890-6955(01)00160-2
    [14] PUŠAVEC F, GRGURAŠ D, KOCH M, et al. Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling [J]. CIRP Annals,2019,68(1):73-76. doi: 10.1016/j.cirp.2019.03.016
    [15] LI C, XU J Y, CHEN M, et al. Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling [J]. Wear,2019,426:1616-1623. doi: 10.1016/j.wear.2019.01.005
    [16] AN Q L, FU Y C, XU J H. The application of cryogenic pneumatic mist jet impinging in high-speed milling of Ti-6Al-4V [M]//Advances in Machining & Manufacturing Technology VIII. Stafa: Trans Tech Publications Ltd., 2006: 244-248.
    [17] GÜNAY M, KORKMAZ M E, YAŞAR N. Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments [J]. Journal of Manufacturing Processes,2020,56:678-687. doi: 10.1016/j.jmapro.2020.05.031
    [18] LV D S, XU J H, DING W F, et al. Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling [J]. Journal of Materials Processing Technology,2016,229:641-650. doi: 10.1016/j.jmatprotec.2015.10.020
    [19] LIU E L, WANG R Y, ZHANG Y, et al. Tool wear analysis of cutting Ti-5553 with uncoated carbide tool under liquid nitrogen cooling condition using tool wear maps [J]. Journal of Manufacturing Processes,2021,68:877-887. doi: 10.1080/10584587.2022.2065572
    [20] PEI S H, XUE F, ZHOU Y F, et al. Effects of cryogenic gas jet cooling on milling surface roughness and tool life for GH4169 alloy additive manufacturing parts [J]. Journal of Manufacturing Processes,2023,86:266-281. doi: 10.1016/j.jmapro.2022.12.062
    [21] 李瑞. ±400kV换流变阀侧强制水冷套管的运行参数对温度的影响机理 [D]. 北京: 华北电力大学, 2022.

    LI Rui. Influence mechanism of ±400kV valve side forced cooling bushing’s operating parameters on temperature [D]. Beijing: North China Electric Power University, 2022.
    [22] 王大鹏, 许卫士, 李鸿运. 海上风电导管架结构与桩基灌浆连接施工工艺 [J]. 海洋开发与管理,2018,35(S1):88-91. doi: 10.3969/j.issn.1005-9857.2018.z1.017

    WANG Dapeng, XU Weishi, LI Hongyun. Construction process of offshore wind power conduit rack structure connected with pile foundation grouting [J]. Ocean Development and Management,2018,35(S1):88-91. doi: 10.3969/j.issn.1005-9857.2018.z1.017
    [23] HUANG Z P, GAO L H, WANG Y W, et al. Determination of the Johnson-cook constitutive model parameters of materials by cluster global optimization algorithm [J]. Journal of Materials Engineering and Performance,2016,25(9):4099-4107. doi: 10.1007/s11665-016-2178-1
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-09-14
  • 录用日期:  2024-10-21
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回