CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石纳米切削单晶GaN的刀具角度影响研究

王永强 夏昊 胡志航 张帅阳 尹韶辉

王永强, 夏昊, 胡志航, 张帅阳, 尹韶辉. 金刚石纳米切削单晶GaN的刀具角度影响研究[J]. 金刚石与磨料磨具工程, 2025, 45(3): 352-365. doi: 10.13394/j.cnki.jgszz.2024.0186
引用本文: 王永强, 夏昊, 胡志航, 张帅阳, 尹韶辉. 金刚石纳米切削单晶GaN的刀具角度影响研究[J]. 金刚石与磨料磨具工程, 2025, 45(3): 352-365. doi: 10.13394/j.cnki.jgszz.2024.0186
WANG Yongqiang, XIA Hao, HU Zhihang, ZHANG Shuaiyang, YIN Shaohui. Effect of tool angle in nanocutting of single crystal GaN using diamond cutter[J]. Diamond & Abrasives Engineering, 2025, 45(3): 352-365. doi: 10.13394/j.cnki.jgszz.2024.0186
Citation: WANG Yongqiang, XIA Hao, HU Zhihang, ZHANG Shuaiyang, YIN Shaohui. Effect of tool angle in nanocutting of single crystal GaN using diamond cutter[J]. Diamond & Abrasives Engineering, 2025, 45(3): 352-365. doi: 10.13394/j.cnki.jgszz.2024.0186

金刚石纳米切削单晶GaN的刀具角度影响研究

doi: 10.13394/j.cnki.jgszz.2024.0186
基金项目: 国家自然科学基金面上项目(52475451);湖南省自然科学基金重大项目(2021JC0005);湖南省教育厅科学研究项目(22A0312);湖南省大学生创新训练项目(S202411528187)。
详细信息
    通讯作者:

    王永强,男,1979年生,博士,副教授,硕士生导师。主要研究方向:半导体材料超精密磨抛加工、纳米加工、分子动力学模拟。E-mail:rancher_wong@126.com

    通信作者:尹韶辉,男,1967年生,博士,教授,博士研究生导师。主要研究方向:纳米制造、超精密加工。E-mail:yinshaohui@hnu.edu.cn

  • 中图分类号: TG73

Effect of tool angle in nanocutting of single crystal GaN using diamond cutter

  • 摘要: 为探究刀具角度对单晶氮化镓(GaN)切削诱导变形行为的影响,对金刚石纳米切削单晶GaN进行分子动力学模拟,并开展实验验证。结果表明:较大的正前角和较小的负前角可强化剪切作用,有利于切屑成形,减少原子侧向流动;而较大的负前角则会加深亚表层损伤。通过位错提取算法(DXA)和晶体结构识别算法(IDS)结合应力应变分析发现,较大的负前角和负后角可引起应力和温度升高,促进位错形核和相变,加剧非晶化。正前角和正后角切削可缓解亚表层损伤,促进去除,更有利于获得优质低损表面。

     

  • 图  1  单晶GaN金刚石刀具纳米切削MD模型

    Figure  1.  MD model of nanocutting for single crystal GaN

    图  2  单颗粒金刚石切削示意图及实验装置

    Figure  2.  Schematic illustrating single grit cutting and corresponding experimental setup

    图  3  刀具金刚石颗粒显微形貌及截面轮廓

    Figure  3.  Cutting tool diamond particle micro-morphology and cross-section profile

    图  4  不同刀具角度下切削距离为16 nm时原子位移横截面

    Figure  4.  Cross-sectional snapshots of atomic displacement with a cutting distance of 16 nm at different tool rake angle and flank angle

    图  5  不同刀具角度下切屑原子数随切削距离变化对比

    Figure  5.  Number of chip atoms against cutting distance under different tool angles

    图  6  不同刀具角度切削的法向力与切向力随切削距离变化对比

    Figure  6.  Comparison of normal force and tangential force of different tool angle cutting with distance

    图  7  位错和晶体结构截面示意图

    Figure  7.  Cross-sectional snapshots of dislocation and crystal structures

    图  8  不同刀具角度下各晶体结构原子数对比图

    Figure  8.  Number of crystal structures atoms under different angles

    图  9  不同刀具角度下亚表层损伤厚度

    Figure  9.  Thickness of sub-surface damage layer under different tool angles

    图  10  不同刀具角度下位错分布图

    Figure  10.  Distribution of dislocation under different tool angles

    图  11  不同刀具角度下位错线长度随切削距离变化对比图

    Figure  11.  Comparison of dislocation line length with cutting distance under different tool angles

    图  12  前、后角为18°时刀具切削区原子的配位数分布示意图

    Figure  12.  A schematic diagram of CNs in cutting zone of tool with rake angle of 18°

    图  13  不同刀具角度下各配位数原子数量对比图

    Figure  13.  Number of CNs against cutting distance under different tool angles

    图  14  剪切应变与米塞斯应力分布示意图

    Figure  14.  Distribution of shear strain and von Mises stress

    图  15  不同刀具角度下平均剪切应变和米塞斯应力随切削距离的变化对比

    Figure  15.  Comparison of average shear strain and von Mises stress with cutting distance under different tool angles

    图  16  不同刀具角度下平均温度随切削距离变化对比图

    Figure  16.  Average temperature against cutting distance under different tool angles

    图  17  实验获得的切削沟槽局部显微形貌及其截面TEM图像

    Figure  17.  Localized topographies and TEM images of grooves cut using diamond grits

    表  1  单晶GaN纳米切削仿真参数

    Table  1.   Simulation parameters of nanocutting for single crystal GaN

    项目 / 参数 类型 / 取值
    工件 GaN
    刀具 金刚石
    工件尺寸 / nm 24 × 16 × 10
    原子数 n / 个 324 786
    前角 γ / (°) −18, −12, −6, 6, 12, 18
    后角 α / (°) −18, −12, −6, 6, 12, 18
    切削深度 d / nm 3
    初始温度 T / K 293
    切削方向 (0001)晶面[−2110]晶向
    切削距离 s / nm 16
    积分步长 t / fs 1
    切削速度 v / (m·s−1) 50
    下载: 导出CSV

    表  2  C-Ga和C-N间相互作用的L-J势函数参数

    Table  2.   Lennard-Jones potential for C-Ga and C-N interactions

    作用对平衡距离 ε / Å内聚能 σ / meV
    C-Ga3.691 98.464 6
    C-N3.367 73.723 5
    下载: 导出CSV
  • [1] FUJIKANE M, YOKOGAWA T, NAGAO S, et al. Nanoindentation study on insight of plasticity related to dislocation density and crystal orientation in GaN [J]. Applied Physics Letters,2012,101(20):201901. doi: 10.1063/1.4767372
    [2] PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting [J]. Nature Materials,2015,14(5):454-458. doi: 10.1038/nmat4270
    [3] TSAO J Y, CRAWFORD M H, COLTRIN M E, et al. Toward smart and ultra-efficient solid-state lighting [J]. Advanced Optical Materials,2014,2(9):809-836. doi: 10.1002/adom.201400131
    [4] MISHRA U K, SHEN L K, KAZIOR T E, et al. GaN-based RF power devices and amplifiers [J]. Proceedings of the IEEE,2008,96(2):287-305. doi: 10.1109/JPROC.2007.911060
    [5] GAUDENZIO M, MATTEO M, ENRICO Z. Gallium nitride-enabled high frequency and high efficiency power conversion [M]. Springer International Publishing, 2018.
    [6] LAI M, ZHANG X D, FANG F Z, et al. Study on nanometric cutting of germanium by molecular dynamics simulation [J]. Nanoscale Research Letters,2013,8(1):13. doi: 10.1186/1556-276X-8-13
    [7] WANG Q L, BAI Q S, CHEN J X, et al. Subsurface defects structural evolution in nano-cutting of single crystal copper [J]. Applied Surface Science,2015,344:38-46. doi: 10.1016/j.apsusc.2015.03.061
    [8] WANG J S, ZHANG X D, FANG F Z, et al. Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling [J]. Computational Materials Science,2020,183:109851. doi: 10.1016/j.commatsci.2020.109851
    [9] WANG P C, YU J G, ZHANG Q X. Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface [J]. Computational Materials Science,2020,184:109915. doi: 10.1016/j.commatsci.2020.109915
    [10] ZHANG C Y, DONG Z G, YUAN S, et al. Study on subsurface damage mechanism of gallium nitride in nano-grinding [J]. Materials Science in Semiconductor Processing,2021,128:105760. doi: 10.1016/j.mssp.2021.105760
    [11] ZHAO L, ZHANG J J, ZHANG J G, et al. Atomistic investigation of machinability of monocrystalline 3C–SiC in elliptical vibration-assisted diamond cutting [J]. Ceramics International,2021,47(2):2358-2366. doi: 10.1016/j.ceramint.2020.09.078
    [12] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J]. International Journal of Machine Tools and Manufacture,2020,156:103594. doi: 10.1016/j.ijmachtools.2020.103594
    [13] LI C, PIAO Y C, MENG B B, et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture,2022,172:103827. doi: 10.1016/j.ijmachtools.2021.103827
    [14] SHUAI Z, HOUFU D. Effect of diamond grain shape on gallium nitride nano-grinding process [J]. Materials Science in Semiconductor Processing,2024,171:108034. doi: 10.1016/j.mssp.2023.108034
    [15] LIU Q, LIAO Z R, AXINTE D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale [J]. International Journal of Machine Tools and Manufacture,2020,159:103620. doi: 10.1016/j.ijmachtools.2020.103620
    [16] WANG B, KANG G Z, YU C, et al. Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration [J]. International Journal of Mechanical Sciences,2021,211:106777. doi: 10.1016/j.ijmecsci.2021.106777
    [17] HUANG H, LI X L, MU D K, et al. Science and art of ductile grinding of brittle solids [J]. International Journal of Machine Tools and Manufacture,2021,161:103675. doi: 10.1016/j.ijmachtools.2020.103675
    [18] ZHAO H W, SHI C L, ZHANG P, et al. Research on the effects of machining-induced subsurface damages on mono-crystalline silicon via molecular dynamics simulation [J]. Applied Surface Science,2012,259:66-71. doi: 10.1016/j.apsusc.2012.06.087
    [19] DAI H F, LI S B, CHEN G Y. Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2019,233(1):61-73. doi: 10.1177/1350650118765351
    [20] KALKHORAN S N A, VAHDATI M, YAN J W. Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: A molecular dynamics approach [J]. Materials Science in Semiconductor Processing,2020,108:104868. doi: 10.1016/j.mssp.2019.104868
    [21] KALKHORAN S N A, VAHDATI M, YAN J W. Molecular dynamics investigation of nanometric cutting of single-crystal silicon using a blunt tool [J]. JOM,2019,71(12):4296-4304. doi: 10.1007/s11837-019-03671-w
    [22] ZHAO P Y, GAO X F, ZHAO B, et al. Investigation on nano-grinding process of GaN using molecular dynamics simulation: Nano-grinding parameters effect [J]. Journal of Manufacturing Processes,2023,102:429-442. doi: 10.1016/j.jmapro.2023.07.046
    [23] XU F F, FANG F Z, ZHANG X D. Side flow effect on surface generation in nano cutting [J]. Nanoscale Research Letters,2017,12(1):359. doi: 10.1186/s11671-017-2136-3
    [24] ABDULKADIR L N, BELLO A A, BAWA M A, et al. Nanometric behaviour of monocrystalline silicon when single point diamond turned: A molecular dynamics and response surface methodology analysis [J]. Engineering Research Express,2020,2(3):035038. doi: 10.1088/2631-8695/abb6dd
    [25] WANG Y Q, TANG S, GUO J. Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining [J]. Applied Surface Science,2020,510:145492. doi: 10.1016/j.apsusc.2020.145492
    [26] WANG Y Q, GUO J. Effect of abrasive size on nano abrasive machining for wurtzite GaN single crystal via molecular dynamics study [J]. Materials Science in Semiconductor Processing,2021,121:105439. doi: 10.1016/j.mssp.2020.105439
    [27] LIU L, EDGAR J. Substrates for gallium nitride epitaxy [J]. Materials Science & Engineering R,2002,37(3):61-127.
    [28] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
    [29] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool [J]. Modelling Simulation in Material Science Engineering,2010,18(1):015012. doi: 10.1088/0965-0393/18/1/015012
    [30] QIAN Y, DENG S Z, SHANG F L, et al. Dependence of tribological behavior of GaN crystal on loading direction: A molecular dynamics study [J]. Journal of Applied Physics,2019,126(7):075108. doi: 10.1063/1.5093227
    [31] VERLET L. Computer "experiments" on classical fluids. I. thermody-namical properties of lennard-Jones molecules [J]. Physical Review,1967,159(1):98-103. doi: 10.1103/PhysRev.159.98
    [32] XIANG H G, LI H T, FU T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Materialia,2017,138:131-139. doi: 10.1016/j.actamat.2017.06.045
    [33] BÉRÉ A, SERRA A. On the atomic structures, mobility and interactions of extended defects in GaN: Dislocations, tilt and twin boundaries [J]. Philosophical Magazine,2006,86(15):2159-2192. doi: 10.1080/14786430600640486
    [34] STILLINGER F H, WEBER T A. Computer simulation of local order in condensed phases of silicon [J]. Physical Review B,1985,31(8):5262-5271. doi: 10.1103/PhysRevB.31.5262
    [35] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B,1989,39(8):5566. doi: 10.1103/PhysRevB.39.5566
    [36] MAYO S L, OLAFSON B D, GODDARD W A. DREIDING: A generic force field for molecular simulations [J]. The Journal of Physical Chemistry,1990,94(26):8897-8909. doi: 10.1021/j100389a010
    [37] ISONO Y, TANAKA T. Three-dimensional molecular dynamics simulation of atomic scale precision processing using a pin tool [J]. JSME International Journal Series A,1997,40(3):211-218. doi: 10.1299/jsmea.40.211
    [38] GOEL S, LUO X C, REUBEN R L. Shear instability of nanocrystalline silicon carbide during nanometric cutting [J]. Applied Physics Letters,2012,100(23):231902. doi: 10.1063/1.4726036
    [39] CROSS G L W. Isolation leads to change [J]. Nature Nanotechnology,2011,6(8):467-468. doi: 10.1038/nnano.2011.124
    [40] SHIMIZU F, OGATA S, LI J. Theory of shear banding in metallic glasses and molecular dynamics calculations [J]. Materials Transactions,2007,48(11):2923-2927. doi: 10.2320/matertrans.MJ200769
    [41] SARASAMAK K, KULKARNI A J, ZHOU M, et al.  Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxialities [J]. Physical Review B,2008,77(2):024104. doi: 10.1103/PhysRevB.77.024104
    [42] QIAN Y, SHANG F L, WAN Q, et al. A molecular dynamics study on indentation response of single crystalline wurtzite GaN [J]. Journal of Applied Physics,2018,124(11):115102. doi: 10.1063/1.5041738
    [43] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering,2012,20(8):085007. doi: 10.1088/0965-0393/20/8/085007
    [44] STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modelling and Simulation in Materials Science and Engineering,2010,18(8):085001. doi: 10.1088/0965-0393/18/8/085001
    [45] WILLIAMS B E, GLASS J T. Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures [J]. Journal of Materials Research,1989,4(2):373-384. doi: 10.1557/JMR.1989.0373
    [46] WANG H, DONG Z G, YUAN S, et al. Effects of tool geometry on tungsten removal behavior during nano-cutting [J]. International Journal of Mechanical Sciences,2022,225:107384. doi: 10.1016/j.ijmecsci.2022.107384
    [47] WU Y, RAO Q, QIN Z, et al. A distinctive material removal mechanism in the diamond grinding of (0001)-oriented single crystal gallium nitride and its implications in substrate manufacturing of brittle materials [J]. International Journal of Machine Tools and Manufacture,2024,203:104222. doi: 10.1016/j.ijmachtools.2024.104222
    [48] LI C, PIAO Y C, MENG B B, et al. Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane [J]. Applied Surface Science,2022,578:152028. doi: 10.1016/j.apsusc.2021.152028
    [49] AHN Y, FARRIS T N, CHANDRASEKAR S. Sliding micro indentation fracture of brittle materials: Role of elastic stress fields [J]. Mechanics of Materials,1998,29(3/4):143-152.
    [50] ZHANG L, ZHAO H W, MA Z C, et al. A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation [J]. AIP Advances,2012,2(4):042116. doi: 10.1063/1.4763462
    [51] GAO T H, MAO S Y, LI L X, et al. Effect of graphene on the surface nanomechanical behavior and subsurface layer of GaN damage during nanogrinding using molecular dynamics simulation [J]. Micro and Nanostructures,2023,184:207694. doi: 10.1016/j.micrna.2023.207694
    [52] BEREND D, BENJAMIN B, TOBIAS P, et al. Modeling of stresses at the cutting wedge in the interrupted cut for the design of the cutting edge microgeometry [J]. Procedia CIRP,2023,117:299-304. doi: 10.1016/j.procir.2023.03.051
    [53] TIAN C J, WENG J, ZHUANG K J, et al. The role of tool edge geometry on material removal and surface integrity in cutting metal matrix composites [J]. Journal of Manufacturing Processes,2025,137:135-149. doi: 10.1016/j.jmapro.2025.01.096
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28
  • 修回日期:  2025-03-04
  • 录用日期:  2025-06-09
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回