CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
FAN Yu, LI Wenhui, YANG Shengqiang, LI Xiuhong, YANG Yingbo, FENG Lidong. Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing[J]. Diamond & Abrasives Engineering, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002
Citation: FAN Yu, LI Wenhui, YANG Shengqiang, LI Xiuhong, YANG Yingbo, FENG Lidong. Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing[J]. Diamond & Abrasives Engineering, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002

Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing

doi: 10.13394/j.cnki.jgszz.2023.0002
More Information
  • Received Date: 2023-01-03
  • Accepted Date: 2023-03-15
  • Rev Recd Date: 2023-03-08
  • The objective of this study is to explore the mechanism of action at the contact interface between gears and particles in spindle barrel finishing, using the Discrete Element Method (DEM) for simulation. The motion of the particles in the vicinity of the gear and the contact particles on the tooth surface is first described. Then the effects of gear embedment depth, gear and roller speed on relative particle motion velocity and tooth contact force are investigated. Finally, the simulation results are verified by experiments. The results show that the action of spindle barrel finishing on the gear tooth face is cyclical in nature. Contact force on the upper and lower tooth surfaces of the gear is not uniform, and the contact force on the upper tooth surface is 1.5 to 1.8 times that on the lower tooth surface. Increasing the gear embedment depth mainly affects the contact force between the particles and the tooth surface. A 75% increase in embedment depth leads to a 76% rise in tooth surface contact force. Similarly, increasing the gear and drum speed mainly affects the relative movement speed between particles and the tooth surface. A 150% increase in gear and drum speed results in a 148% increase in the relative movement speed of particles in contact with the tooth surface. Increasing the embedment depth of the gear can reduce the processing variability of the gear tooth surface along the axial direction. After increasing the embedment depth from 80 mm to 140 mm, the roughness of the upper and lower tooth surfaces along the axial direction decreases from 17% and 36% to 62% and 55%, respectively. However, the processing variability along the tooth profile direction does not change significantly by changing the speed and embedment depth.

     

  • loading
  • [1]
    高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势 [J]. 金属热处理,2014(4):1-6. doi: 10.13251/j.issn.0254-6051.2014.04.001

    GAO Yukui, ZHAO Zhenye. Surface integrity of gears and the development trend of fatigue-resistant manufacturing technology [J]. Metal Heat Treatment,2014(4):1-6. doi: 10.13251/j.issn.0254-6051.2014.04.001
    [2]
    南小侠, 翟婷婷, 韩晓光. 滚磨光整在齿轮加工中的应用技术研究 [J]. 新型工业化,2019,9(7):40-44. doi: 10.19335/j.cnki.2095-6649.2019.07.008

    NAN Xiaoxia, ZHAI Tingting, HAN Xiaoguang. Research on the application technology of roller grinding and finishing in gear machining [J]. New Industrialization,2019,9(7):40-44. doi: 10.19335/j.cnki.2095-6649.2019.07.008
    [3]
    罗丽霞, 武增宏. 光整加工对齿轮传动影响的研究 [J]. 机械工程师,2018(11):155-157, 163. doi: 10.3969/j.issn.1002-2333.2018.11.051

    LUO Lixia, WU Zenghong. Study on the effect of finishing machining on gear transmission [J]. Mechanical Engineer,2018(11):155-157, 163. doi: 10.3969/j.issn.1002-2333.2018.11.051
    [4]
    WANG Na, YANG S Q, ZHAO T T, et al. Experiment and simulation analysis on the mechanism of the spindle barrel finishing [J]. The International Journal of Advanced Manufacturing Technology,2020,109(1):57-74.
    [5]
    杨英波, 李文辉, 李东祥, 等. 齿轮类零件滚磨光整加工技术现状及发展思考 [J]. 表面技术,2021,50(12):1-16. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.001

    YANG Yingbo, LI Wenhui, LI Dongxiang, et al. Research status and development thinking of mass finishing for gear parts [J]. Surface Technology,2021,50(12):1-16. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.001
    [6]
    BUDZISZ W, MARCINIEC A. The new gear finishing method research for highly loaded gears [J]. Aerospace, 2022, 9(131): 1-15.
    [7]
    UHLMANN E, EULITZ A, DETHLEFS A. Discrete element modelling of drag finishing [J]. Procedia Cirp,2015,31:369-374. doi: 10.1016/j.procir.2015.03.021
    [8]
    HASHIMOTO F, CHAUDHARI R G, MELKOTE S N. Characteristics and performance of surfaces created by various finishing methods [J]. Procedia CIRP,2016,45:1-6. doi: 10.1016/j.procir.2016.02.052
    [9]
    KACARAS A, GIBMEIER J, ZANGER F, et al. Influence of rotational speed on surface states after stream finishing [J]. Procedia CIRP,2018,71:221-226. doi: 10.1016/j.procir.2018.05.067
    [10]
    ITOH S, HO J, TURANGAN C, et al. In situ measurement of granular pressure and velocity on component surfaces in stream finishing[C]//International Conference on Advanced Surface Enhancement. Singapore: Springer, 2019: 226-233.
    [11]
    王娜, 杨胜强, 曹波, 等. 主轴式滚磨光整加工参数对加工效果的影响 [J]. 机械设计与制造,2020(5):206-213. doi: 10.3969/j.issn.1001-3997.2020.05.050

    WANG Na, YANG Shengqiang, CAO Bo, et al. Influence of spindle-type roller grinding and finishing parameters on the machining effect [J]. Machine Design and Manufacture,2020(5):206-213. doi: 10.3969/j.issn.1001-3997.2020.05.050
    [12]
    HASHIMOTO Y, ITO T, NAKAYAMA Y, et al. Fundamental investigation of gyro finishing experimental investigation of contact force between cylindrical workpiece and abrasive media under dry condition [J]. Precision Engineering,2021,67:123-136. doi: 10.1016/j.precisioneng.2020.09.009
    [13]
    MALKORRA I, SOULI H, CLAUDIN C, et al. Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model [J]. International Journal of Machine Tools and Manufacture, 2021, 168(Part A): 1-18.
    [14]
    CARIAPA V, PARK H, KIM J, et al. Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine [J]. The International Journal of Advanced Manufacturing Technology,2008,39(1):92-106.
    [15]
    TAN K L, NEOH E T, LIFTON J J, et al. Internal measurement of media sliding velocity in a stream finishing bowl [J]. The International Journal of Advanced Manufacturing Technology,2022,120(7):4681-4691.
    [16]
    MALKORRA I, SOULI H, SALVATORE F, et al. Numerical modelling of the drag finishing process at a macroscopic scale to optimize surface roughness improvement on additively manufactured (SLM) Inconel 718 parts [J]. Procedia CIRP, 2022, 108: 648-653.
    [17]
    杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术[M]. 北京: 国防工业出版社, 2011.

    YANG Shengqiang, LI Wenhui, CHEN Hongling, et al. Theory and new technology of surface finishing [M]. Beijing: National Defense Industry Press, 2011.
    [18]
    ARCHARD J F. Contact and rubbing of flat surfaces [J]. Journal of Applied Physics,1953,24(8):981-988. doi: 10.1063/1.1721448
    [19]
    ARCHARD J F. Friction between metal surfaces [J]. Wear,1986,113(1):3-16. doi: 10.1016/0043-1648(86)90052-9
    [20]
    桂长林. Archard 的磨损设计计算模型及其应用方法 [J]. 润滑与密封,1990(1):12-21.

    GUI Changlin. Archard's wear design calculation model and its application method [J]. Lubrication and Seals,1990(1):12-21.
    [21]
    余将, 杨胜强, 李文辉, 等. 主轴式滚磨光整加工中滚筒转速对滚抛磨块群上界面的影响 [J]. 中国科技论文,2018,13(10):1153-1157. doi: 10.3969/j.issn.2095-2783.2018.10.011

    YU Jiamg, YANG Shengqiang, LI WenHui, et al. Influence of roller speed on the upper interface of roller polishing block group in spindle-type roller polishing process [J]. China Science and Technology Paper,2018,13(10):1153-1157. doi: 10.3969/j.issn.2095-2783.2018.10.011
    [22]
    HASHIMOTO Y, NAKAYAMA Y, FURUMOTO T, et al. Improving finishing efficiency using a cover plate in gyro finishing [J]. Precision Engineering,2022,74:140-146. doi: 10.1016/j.precisioneng.2021.11.004
    [23]
    王程伟, 李秀红, 李文辉, 等. 主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析 [J]. 表面技术,2018,47(11):251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036

    WANG Chengwei, LI Xiuhong, LI Wenhui, et al. Numerical simulation of media flow field in spindle-type roller grinding and finishing process and analysis of the action mechanism [J]. Surface Technology,2018,47(11):251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036
    [24]
    李盼菲. 电阻应变测量中提高精度的方法研究 [J]. 计量与测试技术,2019,46(12):62-64. doi: 10.15988/j.cnki.1004-6941.2019.12.020

    LI Panfei. Research on methods to improve accuracy in resistance-strain measurement [J]. Measurement and Testing Technology,2019,46(12):62-64. doi: 10.15988/j.cnki.1004-6941.2019.12.020
    [25]
    余航, 舒安庆, 丁克勤. 电阻应变片敏感栅栅丝尺寸对测量精度影响的研究 [J]. 中国仪器仪表,2021(4):71-75. doi: 10.3969/j.issn.1005-2852.2021.04.019

    YU Hang, SHU Anqing, DING Keqin. Study on the influence of the size of the sensitive grid wire on the measurement accuracy of resistance strain gauges [J]. China Instrumentation,2021(4):71-75. doi: 10.3969/j.issn.1005-2852.2021.04.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (202) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return