CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
MA Zhenghui, HU Ting, LUO Wen, FANG Zhi, LUO Feng. Effect of different granulation processes and powder particle sizes on uniformity of diamond distribution in the mixed powder[J]. Diamond & Abrasives Engineering, 2025, 45(2): 214-223. doi: 10.13394/j.cnki.jgszz.2023.0191
Citation: MA Zhenghui, HU Ting, LUO Wen, FANG Zhi, LUO Feng. Effect of different granulation processes and powder particle sizes on uniformity of diamond distribution in the mixed powder[J]. Diamond & Abrasives Engineering, 2025, 45(2): 214-223. doi: 10.13394/j.cnki.jgszz.2023.0191

Effect of different granulation processes and powder particle sizes on uniformity of diamond distribution in the mixed powder

doi: 10.13394/j.cnki.jgszz.2023.0191
More Information
  • Received Date: 2023-09-13
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2024-03-02
  •   Objectives  With the rapid development of diamond tool quality and varieties, the requirements for diamond tool properties are increasingly rigorous, and the uniformity of diamond distribution in diamond tools is an important index affecting its performance. The imperfect granulation process of mixed powder containing diamond is one of the reasons for the uneven distribution of diamond in diamond tools. By studying the secondary particle morphology obtained by different granulation processes and the influence of mixed powder with different particle sizes on the uniform distribution of diamond, the distribution uniformity of diamond in the mixed powder is improved, so as to improve the performance of diamond tools.  Methods  Using the same premixed powder as raw material, three different granulation processes—disk granulation, cold press crushing granulation, and diffusion crushing granulation—were used to carry out experiments. The powders of the three granulation processes were sieved using stainless steel standard sieves, and the particle size samples of 180 to 380 μm, 120 to 180 μm, and 75 to 120 μm were obtained under the same process. The effects of different granulation processes and different powder particle sizes on the distribution of 250 to 380 μm diamond in the same mixed powder were studied. At the same time, the nine-point sampling method was used to sample. The actual numbers of diamond particles in each sample were counted manually, the actual numbers of particles were compared with the calculated theoretical numbers of diamond particles and the deviation values were obtained. The averages and the ranges of the deviation values were used to determine the uniformity of diamond distribution in the mixed powder containing diamond.  Results  (1) From the morphology of the powder particles, it can be seen that the circular granulation produces spherical-shaped powder, the cold press crushing granulation produces irregularly shaped powder with distinguishable original particle morphology on its surface, and the diffusion crushing granulation produces irregularly complex shaped powder. (2) The loose packing ratio of powder produced by cold press crushing granulation is the highest, while the loose packing ratio of powder produced by disk granulation and diffusion crushing granulation is not significantly different. Under the same granulation process, the loose packing ratio of large particles is smaller, but as the particle size decreases, the influence of particle size becomes smaller. The flow rate of disk granulation is the highest and decreases with the decrease of particle size, but the flow rate of cold press crushing granulation is the lowest and the change is not significant, while the flow rate of diffusion crushing granulation is in the middle. (3) Under the same granulation process conditions, the distribution uniformity of diamond in mixed powder samples of 180 to 380 μm with three different granulation processes is the best. Under the same particle size range conditions, the distribution uniformity of diamond is the best in the mixed powder samples which are all diffusion crushing granulation. Compared with the diamond distribution in the different particle size mixed powder of the three methods of granulation process, the distribution of diamond controlled in the particle size interval of 180 to 380 μm by diffusion granulation process is the best.  Conclusions  The influences of the same kind of premixed powder on the distribution of diamond in the mixed powders under different granulation process conditions and different particle sizes is studied, and the following conclusions are drawn: (1) The particle morphology of different granulation processes is different. The powder particle morphology of disk granulation is a pseudo-spherical shape like "potato", the powder particle morphology of cold press crushing granulation is irregular shape and the surface can distinguish the original particle morphology, and the powder particle morphology of diffusion crushing granulation is complex irregular shape. (2) Under the same granulation process conditions, the distribution uniformity of diamond in the mixed powder with particle size of 180 to 380 μm (original particle size of 250 to 380 μm) is obviously better than that of the mixed powders with particle size of 120 to 180 μm and 75 to 120 μm. (3) Under the condition of the same particle size range, the distribution uniformity of diamond in the mixed powder under the diffusion crushing granulation is obviously better than that under the disk granulation process and the cold press crushing granulation process.

     

  • loading
  • [1]
    卢寿慈. 粉体加工技术 [M]. 北京: 中国轻工业出版社, 1999.

    LU Shouci. Powder processing technology [M]. Beijing: China Light Industry Press, 1999.
    [2]
    王明智. 金刚石工具制造技术的发展与热点问题 [J]. 超硬材料工程,2011,23(5):37-41. doi: 10.3969/j.issn.1673-1433.2011.05.010

    WANG Mingzhi. Development of diamond tools manufacturing technology & relevant hot issues [J]. Superhard Material Engineering,2011,23(5):37-41. doi: 10.3969/j.issn.1673-1433.2011.05.010
    [3]
    章兼植. 当前金刚石工具制作中的几个热点技术 [J]. 珠宝科技,2002,14(2):44-47. doi: 10.3969/j.issn.1673-1433.2002.02.014

    ZHANG Jianzhi. Several highly concerned technologie in diamond tools at present [J]. Jewelry Science and Technology,2002,14(2):44-47. doi: 10.3969/j.issn.1673-1433.2002.02.014
    [4]
    BURCKHARDT S. New technique for granulating diamond and metal powders [J]. Metal Powder Report,1998,53(4):28-29.
    [5]
    石云霞, 肖锋, 朱艺添, 等. 制粒工艺对金刚石工具胎体性能的影响: 2012全国超硬材料技术发展论坛 [C]. 郑州: 2012.

    SHI Yunxia, XIAO Feng, ZHU Yitian, et al. Effect of granulation process on properties of diamond tool matrix: BBS on 2012 national superhard materials technology development [C]. Zhengzhou: 2012.
    [6]
    李运海, 谢志刚. 制粒颗粒对容积式自动冷压的影响研究 [J]. 超硬材料工程,2016, 28(3):11-17. doi: 10.3969/j.issn.1673-1433.2016.03.003

    LI Yunhai, XIE Zhigang. Research on the effect of granulating particle on volumetric automatic cold pressing [J]. Superhard Material Engineering,2016, 28(3):11-17. doi: 10.3969/j.issn.1673-1433.2016.03.003
    [7]
    孟凡爱, 刘英凯, 王建强. 粉末制粒工艺在金刚石工具制造中的应用研究 [J]. 粉末冶金技术,2010,28(3):188-191.

    MENG Fanai, LIU Yingkai, WANG Jianqiang. Application study on granulation technology in diamond tools manufacture [J]. Powder Metallurgy Technology,2010,28(3):188-191.
    [8]
    雷晓旭, 秦海清, 卢安军, 等. 制粒剂对无压烧结金刚石工具胎体性能的影响 [J]. 超硬材料工程,2014,26(2):31-34. doi: 10.3969/j.issn.1673-1433.2014.02.009

    LEI Xiaoxu, QIN Haiqing, LU Anjun, et al. Influence of granulating agent on the properties of pressureless sintering diamond tool matrix [J]. Superhard Material Engineering,2014,26(2):31-34. doi: 10.3969/j.issn.1673-1433.2014.02.009
    [9]
    冯力, 姜威, 李文生, 等. 混粉工艺对Cu基金刚石锯片胎体组织与硬度的影响 [J]. 粉末冶金材料科学与工程,2015,20(5):795-801. doi: 10.3969/j.issn.1673-0224.2015.05.021

    FENG Li, JIANG Wei, LI Wensheng, et al. Effect of mixing method microstructure and hardness of Cu based diamond sawing matrixes [J]. Materials Science and Engineering of Powder Metallurgy,2015,20(5):795-801. doi: 10.3969/j.issn.1673-0224.2015.05.021
    [10]
    李科. 高能球磨合金化粉末对金刚石工具胎体性能影响的研究 [D]. 泉州: 华侨大学, 2014.

    LI Ke. Research of high power ball mill alloying powder on the performance of diamond tools matrix [D]. Quanzhou: Huaqiao University, 2014.
    [11]
    储志强, 郭学益, 张立, 等. 超高压水雾化工艺参数对金刚石胎体用预合金粉末粒度与形貌的影响 [J]. 粉末冶金材料科学与工程,2015,20(5):808-814. doi: 10.3969/j.issn.1673-0224.2015.05.023

    CHU Zhiqiang, GUO Xueyi, ZHANG Li, et al. Effect of super high pressure water atomization parameters on diameter and micrograph of diamond matrix prealloy powders [J]. Materials Science and Engineering of Powder Metallurgy,2015,20(5):808-814. doi: 10.3969/j.issn.1673-0224.2015.05.023
    [12]
    谢志刚, 刘心宇, 秦海青, 等. 金刚石制品用FeCoCu胎体的烧结与力学性能研究 [J]. 中南大学学报(自然科学版),2010,41(6):2179-2183.

    XIE Zhigang, LIU Xinyu, QIN Haiqing, et al. Sintering and mechanical properties of FeCoCu fetal body applied for diamond tools [J]. Journal of Central South University (Science and Technology),2010,41(6):2179-2183.
    [13]
    郑汉书, 姜荣超, 魏洪涛, 等. 锯切花岗岩用金刚石有序排列锯片构研制 [J]. 石材,2006(11):11-14. doi: 10.3969/j.issn.1005-3352.2006.11.006

    ZHEN Hanshu, JIANG Rongchao, WEI Hongtao, et al. Research and manufacture of diamond array pattern saw blade for cutting granite [J]. Stone,2006(11):11-14. doi: 10.3969/j.issn.1005-3352.2006.11.006
    [14]
    牛明远, 潘秉锁, 田永常. 以锐角比率为测度的金刚石分布均匀性定量评价 [J]. 金刚石与磨料磨具工程,2009(5):28-31,40. doi: 10.3969/j.issn.1006-852X.2009.05.006

    NIU Mingyuan, PAN Bingsuo, TIAN Yongchang. Quantitative measurement of the uniformity of diamond distribution by acute angle ratio method [J]. Diamond & Abrasives Engineering,2009(5):28-31,40. doi: 10.3969/j.issn.1006-852X.2009.05.006
    [15]
    丁天然. 金刚石工具用预合金粉末的制备及其应用 [D]. 北京: 机械科学研究总院, 2011.

    DING Tianran. Preparation and application of pre-alloyed powder for diamond tools [D]. Beijing: China Academy of Machinery Science and Technology,2011.
    [16]
    黄薪槐. 深水金刚石绳锯机设计及串珠绳寿命预测研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    HUANG Xinhuai. Design of deep water diamond wire saw machine and research on life prediction of beaded wire [D]. Harbin: Harbin Engineering University, 2016.
    [17]
    张永锐, 王立权, 张岚, 等. 影响金刚石绳锯使用寿命及切削效率因素的分析 [J]. 中国科技论文在线, 2013(2): 1-14.

    ZHANG Yongrui, WANG Liquan, ZHANG Lan, et al. The analyzing on the factors influencing the service life and cutting efficiency of the diamond wire saw title [J]. China Science and Technology Papers Online, 2013(2): 1-14.
    [18]
    姜荣超. 金刚石均匀分布并有序排列是改善金刚石工具性能的有效途径 [J]. 石材,2006(10):28-37. doi: 10.3969/j.issn.1005-3352.2006.10.014

    JIANG Rongchao. Even distribution / array pattern of diamond is the best way to improve the performance of diamond tools [J]. Stone,2006(10):28-37. doi: 10.3969/j.issn.1005-3352.2006.10.014
    [19]
    刘震, 尹育航, 敬臣, 等. 磨粒有序分布对金刚石锯片切割性能的影响 [J]. 材料导报,2023,37(8):34-38. doi: 10.11896/cldb.21070268

    LIU Zhen, YIN Yuhang, JING Chen, et al. The influence of abrasive orderly arrayed on cutting performance of diamond saw blades [J]. Materials Reports,2023,37(8):34-38. doi: 10.11896/cldb.21070268
    [20]
    张绍和, 杨仙, 谢晓红, 等. 金刚石有序排列对锯片性能的影响 [J]. 粉末冶金技术,2008,26(6):448-451.

    ZHANG Shaohe, YANG Xian, XIE Xiaohong, et al. The influence of diamond array pattern on saw-blade performance [J]. Powder Metallurgy Technology,2008,26(6):448-451.
    [21]
    罗晓丽, 刘一波, 黄盛林, 等. 金刚石定位排列钻头刀头结构对切割性能的影响 [J]. 超硬材料工程,2018(2):18-21. doi: 10.3969/j.issn.1673-1433.2018.02.006

    LUO Xiaoli, LIU Yibo, HUANG Shenglin, et al. The influence of the structure of diamond array pattern on the drilling performance of diamond bits [J]. Superhard Material Engineering,2018(2):18-21. doi: 10.3969/j.issn.1673-1433.2018.02.006
    [22]
    全国有色金属标准化技术委员会. 金属粉末(不包括硬质合金用粉末)在单轴压制中压缩性的测定: GB/T 1481—2022 [S]. 北京: 中国标准出版社, 2022.

    National Non-ferrous Metal Standardization Technical Committee. Metallic powders, excluding powders for hardmetals—determination of compressibility in uniaxial compression: GB/T 1481—2022 [S]. Beijing: Standards Press of China, 2022.
    [23]
    全国有色金属标准化技术委员会. 金属粉末 松装密度的测定 第1部分: 漏斗法: GB/T 1479.1—2011 [S]. 北京: 中国标准出版社, 2011.

    National Non-ferrous Metal Standardization Technical Committee. Metallic powders—determination of apparent density—part 1: Funnal method: GB/T 1479.1—2011 [S]. Beijing: Standards Press of China, 2011.
    [24]
    全国有色金属标准化技术委员会. 金属粉末 流动性的测定 标准漏斗法(霍尔流速计): GB/T 1482−2022 [S]. 北京: 中国标准出版社, 2022.

    National Non-ferrous Metal Standardization Technical Committee. Metallic powders—determination of flow rate—calibrated funnel methods (hall flowmeter): GB/T 1482—2022 [S]. Beijing: Standards Press of China, 2022.
    [25]
    莫时雄. 金刚石粒径测试方法的研究 [J]. 矿产与地质,2001(3):196-200. doi: 10.3969/j.issn.1001-5663.2001.03.010

    MO Shixiong. Study on the method of diamond grain size analysis [J]. Mineral Resources and Geology,2001(3):196-200. doi: 10.3969/j.issn.1001-5663.2001.03.010
    [26]
    唐存印, 章兼植. 金刚石粒径和每克拉颗粒数的研究 [J]. 金刚石与磨料磨具工程,2002(4):32-35. doi: 10.3969/j.issn.1006-852X.2002.04.009

    TANG Cunyin, ZHANG Jianzhi. Study on diamond particle size and particle number per carat [J]. Diamond & Abrasives Engineering,2002(4):32-35. doi: 10.3969/j.issn.1006-852X.2002.04.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (35) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return