Citation: | CHEN Xiaodong, WANG Dexiang, GUO Feng, LI Xinming, JIANG Jingliang. Modelling of circumferential surface topography of grinding wheel with random distribution of circular truncated cone abrasive grains[J]. Diamond & Abrasives Engineering, 2025, 45(3): 408-415. doi: 10.13394/j.cnki.jgszz.2024.0086 |
[1] |
ZHONG Z W. Advanced polishing, grinding and finishing processes for various manufacturing applications: A review [J]. Materials and Manufacturing Processes,2020,35(12):1279-1303. doi: 10.1080/10426914.2020.1772481
|
[2] |
CAO Y, YIN J F, DING W F, et al. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of inconel 718 nickel-based superalloy [J]. Journal of Materials Processing Technology,2021,297:117241. doi: 10.1016/j.jmatprotec.2021.117241
|
[3] |
DURGUMAHANTI U S P, SINGH V, RAO P V. A new model for grinding force prediction and analysis [J]. International Journal of Machine Tools and Manufacture,2010,50: (3):231-241. doi: 10.1016/j.ijmachtools.2009.12.004
|
[4] |
MENG Q Y, GUO B, ZHAO Q L, et al. Modelling of grinding mech-anics: A review [J]. Chinese Journal of Aeronautics,2023,36(7):25-39. doi: 10.1016/j.cja.2022.10.006
|
[5] |
王德祥, 孙树峰, 颜丙亮, 等. 已加工表面热源模型研究及磨削温度场数值模拟 [J]. 西安交通大学学报,2018,52(4):84-89. doi: 10.7652/xjtuxb201804012
WANG Dexiang, SUN Shufeng, YAN Bingliang, et al. Modeling of heat source on machined surface and numerical simulation for grinding temperature field [J]. Journal of Xi’an Jiaotong University,2018,52(4):84-89. doi: 10.7652/xjtuxb201804012
|
[6] |
LAN S L, JIAO F. Modeling of heat source in grinding zone and numerical simulation for grinding temperature field [J]. The International Journal of Advanced Manufacturing Technology,2019,103(5/6/7/8):3077-3086. doi: 10.1007/s00170-019-03662-w
|
[7] |
NIE Z G, WANG G, WANG L P, et al. A coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed abrasive grains [J]. Journal of Manufacturing Science and Engineering,2019,141(8):081005. doi: 10.1115/1.4043799
|
[8] |
WU Z H, ZHANG L C. Analytical grinding force prediction with random abrasive grains of grinding wheels [J]. International Journal of Mechanical Sciences,2023,250:108310. doi: 10.1016/j.ijmecsci.2023.108310
|
[9] |
言兰. 基于单颗磨粒切削的淬硬模具钢磨削机理研究 [D]. 长沙: 湖南大学, 2010.
YAN Lan. Research on grinding mechanism of hardened cold-work die steel based on single grin cutting [D]. Changsha: Hunan University, 2010.
|
[10] |
LIU M Z, LI C H, ZHANG Y B, et al. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics [J]. Chinese Journal of Aeronautics,2023,36(7):160-193. doi: 10.1016/j.cja.2022.11.005
|
[11] |
MA Z L, WANG Q H, CHEN H, et al. A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic [J]. Journal of Materials Processing Technology,2022,302:117492. doi: 10.1016/j.jmatprotec.2022.117492
|
[12] |
ZHANG Y B, LI C H, JI H J, et al. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms [J]. International Journal of Machine Tools and Manufacture,2017,122:81-97. doi: 10.1016/j.ijmachtools.2017.06.002
|
[13] |
JAMSHIDI H, GURTAN M, BUDAK E. Identification of active number of grits and its effects on mechanics and dynamics of abrasive processes [J]. Journal of Materials Processing Technology,2019,273:116239. doi: 10.1016/j.jmatprotec.2019.05.020
|
[14] |
WANG D X, GE P Q, BI W B, et al. Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition [J]. The International Journal of Advanced Manufacturing Technology,2014,70(9):2111-2123. doi: 10.1007/s00170-013-5428-5
|
[15] |
王胜. 纳米粒子射流微量润滑磨削表面形貌创成机理与实验研究[D]. 青岛: 青岛理工大学, 2013.
WANG Sheng. Generating mechanism and experimental investigation on surface topography in the grinding process using MQL by nanopaticles jet [D]. Qingdao: Qingdao University of Technology, 2013.
|
[16] |
LIU W, DENG Z, SHANG Y, et al. Parametric evaluation and three-dimensional modelling for surface topography of grinding wheel [J]. International Journal of Mechanical Sciences,2019,155:334-342. doi: 10.1016/j.ijmecsci.2019.03.006
|
[17] |
陈豪, 赵继, 徐秀玲, 等. 基于凸多面体碰撞检测的虚拟砂轮建模研究 [J]. 中国机械工程,2022,33(2):127-133. doi: 10.3969/j.issn.1004-132X.2022.02.001
CHEN Hao, ZHAO Ji, XU Xiuling, et al. Research on virtual grinding wheel modeling based on convex polyhedron collision detection [J]. China Mechanical Engineering,2022,33(2):127-133. doi: 10.3969/j.issn.1004-132X.2022.02.001
|
[18] |
LIU Y M, WARKENTIN A, BAUER R, et al. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations [J]. Precision Engineering,2013,37(3):758-764. doi: 10.1016/j.precisioneng.2013.02.009
|
[19] |
PAWLUS P, REIZER R, KROLCZYK G M. Modelling and prediction of surface textures after abrasive machining processes: A review [J]. Measurement,2023,220:113337. doi: 10.1016/j.measurement.2023.113337
|
[20] |
KOSHY P, IVES L K, JAHANMIR S. Simulation of diamond-ground surface [J]. International Journal of Machine Tools and Manufacture,1999,39(9):1451-1470. doi: 10.1016/S0890-6955(99)00002-4
|
[21] |
WANG S, LI C H, ZHANG D K, et al. Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication [J]. The International Journal of Advanced Manufacturing Technology,2014,74(5/6/7/8):835-850. doi: 10.1007/s00170-014-6032-z
|
[22] |
TAWAKOLI T, HADAD M J, SADEGHI M H. Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant-lubricant types [J]. International Journal of Machine Tools and Manufacture,2010,50(8):698-708. doi: 10.1016/j.ijmachtools.2010.04.009
|