Citation: | WANG Yongqiang, XIA Hao, HU Zhihang, ZHANG Shuaiyang, YIN Shaohui. Effect of tool angle in nanocutting of single crystal GaN using diamond cutter[J]. Diamond & Abrasives Engineering, 2025, 45(3): 352-365. doi: 10.13394/j.cnki.jgszz.2024.0186 |
[1] |
FUJIKANE M, YOKOGAWA T, NAGAO S, et al. Nanoindentation study on insight of plasticity related to dislocation density and crystal orientation in GaN [J]. Applied Physics Letters,2012,101(20):201901. doi: 10.1063/1.4767372
|
[2] |
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting [J]. Nature Materials,2015,14(5):454-458. doi: 10.1038/nmat4270
|
[3] |
TSAO J Y, CRAWFORD M H, COLTRIN M E, et al. Toward smart and ultra-efficient solid-state lighting [J]. Advanced Optical Materials,2014,2(9):809-836. doi: 10.1002/adom.201400131
|
[4] |
MISHRA U K, SHEN L K, KAZIOR T E, et al. GaN-based RF power devices and amplifiers [J]. Proceedings of the IEEE,2008,96(2):287-305. doi: 10.1109/JPROC.2007.911060
|
[5] |
GAUDENZIO M, MATTEO M, ENRICO Z. Gallium nitride-enabled high frequency and high efficiency power conversion [M]. Springer International Publishing, 2018.
|
[6] |
LAI M, ZHANG X D, FANG F Z, et al. Study on nanometric cutting of germanium by molecular dynamics simulation [J]. Nanoscale Research Letters,2013,8(1):13. doi: 10.1186/1556-276X-8-13
|
[7] |
WANG Q L, BAI Q S, CHEN J X, et al. Subsurface defects structural evolution in nano-cutting of single crystal copper [J]. Applied Surface Science,2015,344:38-46. doi: 10.1016/j.apsusc.2015.03.061
|
[8] |
WANG J S, ZHANG X D, FANG F Z, et al. Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling [J]. Computational Materials Science,2020,183:109851. doi: 10.1016/j.commatsci.2020.109851
|
[9] |
WANG P C, YU J G, ZHANG Q X. Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface [J]. Computational Materials Science,2020,184:109915. doi: 10.1016/j.commatsci.2020.109915
|
[10] |
ZHANG C Y, DONG Z G, YUAN S, et al. Study on subsurface damage mechanism of gallium nitride in nano-grinding [J]. Materials Science in Semiconductor Processing,2021,128:105760. doi: 10.1016/j.mssp.2021.105760
|
[11] |
ZHAO L, ZHANG J J, ZHANG J G, et al. Atomistic investigation of machinability of monocrystalline 3C–SiC in elliptical vibration-assisted diamond cutting [J]. Ceramics International,2021,47(2):2358-2366. doi: 10.1016/j.ceramint.2020.09.078
|
[12] |
YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J]. International Journal of Machine Tools and Manufacture,2020,156:103594. doi: 10.1016/j.ijmachtools.2020.103594
|
[13] |
LI C, PIAO Y C, MENG B B, et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture,2022,172:103827. doi: 10.1016/j.ijmachtools.2021.103827
|
[14] |
SHUAI Z, HOUFU D. Effect of diamond grain shape on gallium nitride nano-grinding process [J]. Materials Science in Semiconductor Processing,2024,171:108034. doi: 10.1016/j.mssp.2023.108034
|
[15] |
LIU Q, LIAO Z R, AXINTE D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale [J]. International Journal of Machine Tools and Manufacture,2020,159:103620. doi: 10.1016/j.ijmachtools.2020.103620
|
[16] |
WANG B, KANG G Z, YU C, et al. Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration [J]. International Journal of Mechanical Sciences,2021,211:106777. doi: 10.1016/j.ijmecsci.2021.106777
|
[17] |
HUANG H, LI X L, MU D K, et al. Science and art of ductile grinding of brittle solids [J]. International Journal of Machine Tools and Manufacture,2021,161:103675. doi: 10.1016/j.ijmachtools.2020.103675
|
[18] |
ZHAO H W, SHI C L, ZHANG P, et al. Research on the effects of machining-induced subsurface damages on mono-crystalline silicon via molecular dynamics simulation [J]. Applied Surface Science,2012,259:66-71. doi: 10.1016/j.apsusc.2012.06.087
|
[19] |
DAI H F, LI S B, CHEN G Y. Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2019,233(1):61-73. doi: 10.1177/1350650118765351
|
[20] |
KALKHORAN S N A, VAHDATI M, YAN J W. Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: A molecular dynamics approach [J]. Materials Science in Semiconductor Processing,2020,108:104868. doi: 10.1016/j.mssp.2019.104868
|
[21] |
KALKHORAN S N A, VAHDATI M, YAN J W. Molecular dynamics investigation of nanometric cutting of single-crystal silicon using a blunt tool [J]. JOM,2019,71(12):4296-4304. doi: 10.1007/s11837-019-03671-w
|
[22] |
ZHAO P Y, GAO X F, ZHAO B, et al. Investigation on nano-grinding process of GaN using molecular dynamics simulation: Nano-grinding parameters effect [J]. Journal of Manufacturing Processes,2023,102:429-442. doi: 10.1016/j.jmapro.2023.07.046
|
[23] |
XU F F, FANG F Z, ZHANG X D. Side flow effect on surface generation in nano cutting [J]. Nanoscale Research Letters,2017,12(1):359. doi: 10.1186/s11671-017-2136-3
|
[24] |
ABDULKADIR L N, BELLO A A, BAWA M A, et al. Nanometric behaviour of monocrystalline silicon when single point diamond turned: A molecular dynamics and response surface methodology analysis [J]. Engineering Research Express,2020,2(3):035038. doi: 10.1088/2631-8695/abb6dd
|
[25] |
WANG Y Q, TANG S, GUO J. Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining [J]. Applied Surface Science,2020,510:145492. doi: 10.1016/j.apsusc.2020.145492
|
[26] |
WANG Y Q, GUO J. Effect of abrasive size on nano abrasive machining for wurtzite GaN single crystal via molecular dynamics study [J]. Materials Science in Semiconductor Processing,2021,121:105439. doi: 10.1016/j.mssp.2020.105439
|
[27] |
LIU L, EDGAR J. Substrates for gallium nitride epitaxy [J]. Materials Science & Engineering R,2002,37(3):61-127.
|
[28] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
|
[29] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool [J]. Modelling Simulation in Material Science Engineering,2010,18(1):015012. doi: 10.1088/0965-0393/18/1/015012
|
[30] |
QIAN Y, DENG S Z, SHANG F L, et al. Dependence of tribological behavior of GaN crystal on loading direction: A molecular dynamics study [J]. Journal of Applied Physics,2019,126(7):075108. doi: 10.1063/1.5093227
|
[31] |
VERLET L. Computer "experiments" on classical fluids. I. thermody-namical properties of lennard-Jones molecules [J]. Physical Review,1967,159(1):98-103. doi: 10.1103/PhysRev.159.98
|
[32] |
XIANG H G, LI H T, FU T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Materialia,2017,138:131-139. doi: 10.1016/j.actamat.2017.06.045
|
[33] |
BÉRÉ A, SERRA A. On the atomic structures, mobility and interactions of extended defects in GaN: Dislocations, tilt and twin boundaries [J]. Philosophical Magazine,2006,86(15):2159-2192. doi: 10.1080/14786430600640486
|
[34] |
STILLINGER F H, WEBER T A. Computer simulation of local order in condensed phases of silicon [J]. Physical Review B,1985,31(8):5262-5271. doi: 10.1103/PhysRevB.31.5262
|
[35] |
TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B,1989,39(8):5566. doi: 10.1103/PhysRevB.39.5566
|
[36] |
MAYO S L, OLAFSON B D, GODDARD W A. DREIDING: A generic force field for molecular simulations [J]. The Journal of Physical Chemistry,1990,94(26):8897-8909. doi: 10.1021/j100389a010
|
[37] |
ISONO Y, TANAKA T. Three-dimensional molecular dynamics simulation of atomic scale precision processing using a pin tool [J]. JSME International Journal Series A,1997,40(3):211-218. doi: 10.1299/jsmea.40.211
|
[38] |
GOEL S, LUO X C, REUBEN R L. Shear instability of nanocrystalline silicon carbide during nanometric cutting [J]. Applied Physics Letters,2012,100(23):231902. doi: 10.1063/1.4726036
|
[39] |
CROSS G L W. Isolation leads to change [J]. Nature Nanotechnology,2011,6(8):467-468. doi: 10.1038/nnano.2011.124
|
[40] |
SHIMIZU F, OGATA S, LI J. Theory of shear banding in metallic glasses and molecular dynamics calculations [J]. Materials Transactions,2007,48(11):2923-2927. doi: 10.2320/matertrans.MJ200769
|
[41] |
SARASAMAK K, KULKARNI A J, ZHOU M, et al. Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxialities [J]. Physical Review B,2008,77(2):024104. doi: 10.1103/PhysRevB.77.024104
|
[42] |
QIAN Y, SHANG F L, WAN Q, et al. A molecular dynamics study on indentation response of single crystalline wurtzite GaN [J]. Journal of Applied Physics,2018,124(11):115102. doi: 10.1063/1.5041738
|
[43] |
STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering,2012,20(8):085007. doi: 10.1088/0965-0393/20/8/085007
|
[44] |
STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Modelling and Simulation in Materials Science and Engineering,2010,18(8):085001. doi: 10.1088/0965-0393/18/8/085001
|
[45] |
WILLIAMS B E, GLASS J T. Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures [J]. Journal of Materials Research,1989,4(2):373-384. doi: 10.1557/JMR.1989.0373
|
[46] |
WANG H, DONG Z G, YUAN S, et al. Effects of tool geometry on tungsten removal behavior during nano-cutting [J]. International Journal of Mechanical Sciences,2022,225:107384. doi: 10.1016/j.ijmecsci.2022.107384
|
[47] |
WU Y, RAO Q, QIN Z, et al. A distinctive material removal mechanism in the diamond grinding of (0001)-oriented single crystal gallium nitride and its implications in substrate manufacturing of brittle materials [J]. International Journal of Machine Tools and Manufacture,2024,203:104222. doi: 10.1016/j.ijmachtools.2024.104222
|
[48] |
LI C, PIAO Y C, MENG B B, et al. Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane [J]. Applied Surface Science,2022,578:152028. doi: 10.1016/j.apsusc.2021.152028
|
[49] |
AHN Y, FARRIS T N, CHANDRASEKAR S. Sliding micro indentation fracture of brittle materials: Role of elastic stress fields [J]. Mechanics of Materials,1998,29(3/4):143-152.
|
[50] |
ZHANG L, ZHAO H W, MA Z C, et al. A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation [J]. AIP Advances,2012,2(4):042116. doi: 10.1063/1.4763462
|
[51] |
GAO T H, MAO S Y, LI L X, et al. Effect of graphene on the surface nanomechanical behavior and subsurface layer of GaN damage during nanogrinding using molecular dynamics simulation [J]. Micro and Nanostructures,2023,184:207694. doi: 10.1016/j.micrna.2023.207694
|
[52] |
BEREND D, BENJAMIN B, TOBIAS P, et al. Modeling of stresses at the cutting wedge in the interrupted cut for the design of the cutting edge microgeometry [J]. Procedia CIRP,2023,117:299-304. doi: 10.1016/j.procir.2023.03.051
|
[53] |
TIAN C J, WENG J, ZHUANG K J, et al. The role of tool edge geometry on material removal and surface integrity in cutting metal matrix composites [J]. Journal of Manufacturing Processes,2025,137:135-149. doi: 10.1016/j.jmapro.2025.01.096
|