CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单颗金刚石磨粒划擦反应烧结碳化硅复合材料的实验及仿真

张德涵 丁康 蔡昕彤 杨峰 董志刚 鲍岩 郭晓光 康仁科

张德涵, 丁康, 蔡昕彤, 杨峰, 董志刚, 鲍岩, 郭晓光, 康仁科. 单颗金刚石磨粒划擦反应烧结碳化硅复合材料的实验及仿真[J]. 金刚石与磨料磨具工程, 2025, 45(3): 366-376. doi: 10.13394/j.cnki.jgszz.2024.0053
引用本文: 张德涵, 丁康, 蔡昕彤, 杨峰, 董志刚, 鲍岩, 郭晓光, 康仁科. 单颗金刚石磨粒划擦反应烧结碳化硅复合材料的实验及仿真[J]. 金刚石与磨料磨具工程, 2025, 45(3): 366-376. doi: 10.13394/j.cnki.jgszz.2024.0053
ZHANG Dehan, DING Kang, CAI Xintong, YANG Feng, DONG Zhigang, BAO Yan, GUO Xiaoguang, KANG Renke. Experiment and simulation of single diamond abrasive particle scratching RB-SiC composite material[J]. Diamond & Abrasives Engineering, 2025, 45(3): 366-376. doi: 10.13394/j.cnki.jgszz.2024.0053
Citation: ZHANG Dehan, DING Kang, CAI Xintong, YANG Feng, DONG Zhigang, BAO Yan, GUO Xiaoguang, KANG Renke. Experiment and simulation of single diamond abrasive particle scratching RB-SiC composite material[J]. Diamond & Abrasives Engineering, 2025, 45(3): 366-376. doi: 10.13394/j.cnki.jgszz.2024.0053

单颗金刚石磨粒划擦反应烧结碳化硅复合材料的实验及仿真

doi: 10.13394/j.cnki.jgszz.2024.0053
基金项目: 国家重点研发计划(2022YFB3403401)。
详细信息
    作者简介:

    康仁科,男,1962年生,教授。主要研究方向:精密与超精密加工、特种加工等。E-mail:kangrk@dlut.edu.cn

  • 中图分类号: TG74; TG58

Experiment and simulation of single diamond abrasive particle scratching RB-SiC composite material

  • 摘要: 反应烧结碳化硅(RB-SiC)复合材料具有比刚度高、硬度高、耐腐蚀和耐磨损等优异性能,被广泛用于航空航天等领域,然而其较高的硬度和脆性等导致使用传统加工方式时易出现较多缺陷。为探究RB-SiC复合材料磨削加工时的材料去除机理及表面损伤成因,开展单颗金刚石磨粒压头划擦实验,同时以连续分布的Si为基体,以呈颗粒或粉末状分布的SiC相为增强相,构建新的RB-SiC复合材料有限元仿真模型,并利用ABAQUS有限元仿真软件进行划擦仿真,研究复合材料表面的裂纹形成及材料去除机理,掌握划擦过程中压头−颗粒相互作用导致的切削力变化规律。结果表明,划擦实验与模型仿真结果吻合情况较好。随着切削深度增加,切削力逐渐增大,划痕路径上的破碎范围变大,材料表面形貌变差;当切削深度大于塑脆转变深度时,材料以脆性去除为主,划擦产生的应力向前传递,产生沿晶和穿晶裂纹;且划擦产生的应力大于SiC颗粒断裂应力,使SiC颗粒破碎去除,而基体则塑性去除;SiC颗粒与金刚石磨粒尖端的轨迹相对位置及SiC颗粒间距会导致划擦力变化,位于金刚石磨粒尖端移动轨迹上的SiC颗粒会导致划擦力上升,SiC颗粒间距过近时则划擦力会突升并在后方SiC颗粒破碎后骤降。

     

  • 图  1  样件表面的微观结构、元素分布及表面粗糙度

    Figure  1.  Microstructure, element distribution and surface roughness of specimen surface

    图  2  单颗粒划擦实验平台组成

    Figure  2.  Compositions of single particle scratch experimental platform

    图  3  界面层建模方法[16]

    Figure  3.  Interface layer modeling methods[16]

    图  4  基体及颗粒模型

    Figure  4.  Matrix material and particle model

    图  5  金刚石压头建模

    Figure  5.  Diamond indenter modeling

    图  6  网格划分结果及边界设置

    Figure  6.  Result of grid division and boundary setting

    图  7  不同划擦深度下实验与仿真的划擦力平均值

    Figure  7.  Average scratch force values of experiments and simulations at different scratch depths

    图  8  划擦轨迹及对应时刻划擦力结果

    Figure  8.  Scratch trajectory and scratching force results at corresponding times

    图  9  各颗粒的应力分布云图及颗粒断裂放大图

    Figure  9.  Stress distribution nephogram of each particle and enlarged diagram of particle fracture

    图  10  不同划擦深度下的划擦路径宽度及破碎宽度

    Figure  10.  Scratch path widths and crushing widths under different scratch depths

    图  11  划擦路径放大图

    Figure  11.  Scratch path enlargement

    图  12  划擦深度为5 μm下材料表面的塑性去除

    Figure  12.  Plastic removal of material surface at scratch depth of 5 μm

    图  13  不同划擦深度下的仿真结果

    Figure  13.  Simulation results under different scratch depths

    图  14  亚表面裂纹扩展及其对应应力的仿真结果

    Figure  14.  Simulation results of subsurface crack propagation and its corresponding stress

    表  1  RB-SiC复合材料的基本力学性能参数[9]

    Table  1.   Basic mechanical property parameters of RB-SiC composite materials[9]

    参数 取值
    密度 ρ1 / (g·cm−3) 3.16
    弹性模量 E1 / GPa 420
    泊松比 ε1 0.17
    断裂韧性 KIC / (MPa·m1/2) 3.04
    维氏硬度 HV / MPa 2 002
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Testing condition

    实验编号 划擦深度 ap / μm 划擦速度 v / (m·s−1)
    1 5 2.4
    2 10 2.4
    3 20 2.4
    4 30 2.4
    下载: 导出CSV

    表  3  基体材料的本构模型参数

    Table  3.   Constitutive model parameters of matrix material

    参数 取值
    密度 ρ2 / (g·cm−3) 2975
    弹性模量 E2 / MPa 385 870
    泊松比 ε2 0.24
    初始屈服强度 σ / MPa 800
    摩擦角 β / (°) 15
    膨胀角 Ψ / (°) −1
    流应力比 R 0.9
    下载: 导出CSV

    表  4  SiC颗粒材料参数[13-15]

    Table  4.   SiC particle material parameters[13-15]

    参数 取值
    密度 ρ3 / (g·cm−3) 3 200
    弹性模量 E3 / MPa 485 000
    泊松比 ε3 0.2
    热传导系数 λ / (W·m−1·K−1) 81
    比热容 c / (J·kg−1·K−1) 427
    热膨胀系数 α2 / K−1 4.09 × 10−9
    下载: 导出CSV
  • [1] ZOU Y, LI C H, TANG Y H, et al. Preform impregnation to optimize the properties and microstructure of RB-SiC prepared with laser sintering and reactive melt infiltration [J]. Journal of the European Ceramic Society,2020,40(15):5186-5195. doi: 10.1016/j.jeurceramsoc.2020.07.023
    [2] ZHANG Z Z, YAO P, WANG J, et al. Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling of the ground surface roughness [J]. Ceramics International,2020,46(5):6243-6253. doi: 10.1016/j.ceramint.2019.11.094
    [3] DONG Z C, CHENG H B. Ductile mode grinding of reaction-bonded silicon carbide mirrors [J]. Applied Optics,2017,56(26):7404-7412. doi: 10.1364/AO.56.007404
    [4] LI Q S, ZHANG Y J, SUN H B, et al. Effect of carbon black content and molding pressure on the thermal conductivity of SiC/Si ceramic composites [J]. Key Engineering Materials,2015,655:58-61. doi: 10.4028/www.scientific.net/KEM.655.58
    [5] 李志鹏. RB-SiC陶瓷磨削损伤形成机制及抑制技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LI Zhipeng. Research on grinding damage formation mechanism and suppression technology of RB-SiC ceramics [D]. Harbin: Harbin Institute of Technology, 2019.
    [6] 王亚茹, 李英杰, 邹莱, 等. RB-SiC金刚石磨粒柔性刻划材料去除及表面损伤行为 [J]. 光学精密工程,2022,30(14):1704-1715. doi: 10.37188/OPE.20223014.1704

    WANG Yaru, LI Yingjie, ZOU Lai, et al. Material removal and surface damage behavior of diamond grain for flexible scribing RB-SiC [J]. Optics and Precision Engineering,2022,30(14):1704-1715. doi: 10.37188/OPE.20223014.1704
    [7] RAO X S, ZHANG F H, LUO X C, et al. Material removal mode and friction behaviour of RB-SiC ceramics during scratching at elevated temperatures [J]. Journal of the European Ceramic Society,2019,39(13):3534-3545. doi: 10.1016/j.jeurceramsoc.2019.05.015
    [8] 韩腊. 反应烧结碳化硅振动辅助切削加工工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HAN La. Research on vibration-assisted cutting process of reaction-bonded silicon carbide [D]. Harbin: Harbin Institute of Technology, 2019
    [9] 高峰. RB-SiC超声辅助磨削及剩余强度研究 [D]. 大连: 大连理工大学, 2016.

    GAO Feng. Study on ultrasonic assisted grinding of RB-SiC and residual strength abstract [D]. Dalian: Dalian University of Technology, 2016.
    [10] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics,1952,10(2):157-165. doi: 10.1090/qam/48291
    [11] 胡传奇, 刘海林, 黄小婷, 等. 反应烧结碳化硅的显微结构和力学性能分析 [J]. 中国陶瓷工业,2020,27(5):7-11. doi: 10.13958/j.cnki.ztcg.2020.05.002

    HU Chuanqi, LIU Hailin, HUANG Xiaoting, et al. Microstructure and mechanical properties of reaction sintered silicon carbide [J]. China Ceramic Industry,2020,27(5):7-11. doi: 10.13958/j.cnki.ztcg.2020.05.002
    [12] TURSUN G, WEBER U, SOPPA E, et al. The influence of transition phases on the damage behaviour of an Al/10vol.%SiC composite [J]. Computational Materials Science,2006,37(1/2):119-133. doi: 10.1016/j.commatsci.2005.12.018
    [13] LIU J W, CHENG K, DING H, et al. Simulation study of the influence of cutting speed and tool-particle interaction location on surface formation mechanism in micromachining SiCp/Al composites [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2018,232(11):2044-2056. doi: 10.1177/0954406217713521
    [14] 武永祥. SiCp/Al复合材料切削仿真研究与实验验证 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WU Yongxiang. Research on the cutting simulation of SiCp/Al composite and experimental verification [D]. Harbin: Harbin Institute of Technology, 2017
    [15] 王涛. 高体积分数SiCp/Al复合材料高速铣削基础研究 [D]. 北京: 北京理工大学, 2015.

    WANG Tao. Fundamental study on high speed milling of high volume fraction SiCp/Al composite [D]. Beijing: Beijing Institute of Technology, 2015.
    [16] 徐春光. SiCp/Al材料振动切削界面层损伤机理仿真与实验研究 [D]. 大连: 大连交通大学, 2020.

    XU Chunguang. Simulation and experimental research on the damage machanism of interface layer in SiCp/Al materials during vibration cutting [D]. Dalian: Dalian Jiaotong University, 2020.
    [17] DANDEKAR C R, SHIN Y C. Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites [J]. Composites Part A: Applied Science and Manufacturing,2009,40(8):1231-1239. doi: 10.1016/j.compositesa.2009.05.017
    [18] WILLIAMS J J, SEGURADO J, LLORCA J, et al. Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites [J]. Materials Science & Engineering A,2012,557:113-118. doi: 10.1016/j.msea.2012.05.108
    [19] UMER U, ASHFAQ M, QUDEIRI J A, et al. Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements [J]. The International Journal of Advanced Manufacturing Technology,2015,78(5):1171-1179. doi: 10.1007/s00170-014-6715-5
    [20] LI Z P, ZHANG F H, LUO X C, et al. Fundamental understanding of the deformation mechanism and corresponding behavior of RB-SiC ceramics subjected to nano-scratch in ambient temperature [J]. Applied Surface Science,2019,469:674-683. doi: 10.1016/j.apsusc.2018.11.090
    [21] SONG S G, VAIDYA R U, ZUREK A K, et al. Stacking faults in sic particles and their effect on the fracture behavior of a 15 Vol Pct SiC/6061-AI matrix composite [J]. Metallurgical and Materials Transactions A,1996,27(2):459-465. doi: 10.1007/BF02648423
    [22] MENG B B, ZHANG Y, ZHANG F H. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter [J]. Applied Physics A: Materials Science & Processing,2016,122(3):247. doi: 10.1007/s00339-016-9802-7
    [23] 肖亚航, 傅敏士. SiC颗粒中的堆垛层错及其对SiC/6061-Al基复合材料断裂性能的影响 [J]. 国外金属热处理,2001(2):27-30. doi: 10.3969/j.issn.1673-4971.2001.02.009

    XIAO Yahang, FU Minshi. Stacking fault in SiC particles and its effect on fracture properties of SiC/6061-Al matrix composites [J]. Heat Treatment of Metals Abroad,2001(2):27-30. doi: 10.3969/j.issn.1673-4971.2001.02.009
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-26
  • 录用日期:  2024-06-24
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回