CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆台磨粒随机分布的砂轮圆周表面形貌建模

陈小冬 王德祥 郭峰 栗心明 江京亮

陈小冬, 王德祥, 郭峰, 栗心明, 江京亮. 圆台磨粒随机分布的砂轮圆周表面形貌建模[J]. 金刚石与磨料磨具工程, 2025, 45(3): 408-415. doi: 10.13394/j.cnki.jgszz.2024.0086
引用本文: 陈小冬, 王德祥, 郭峰, 栗心明, 江京亮. 圆台磨粒随机分布的砂轮圆周表面形貌建模[J]. 金刚石与磨料磨具工程, 2025, 45(3): 408-415. doi: 10.13394/j.cnki.jgszz.2024.0086
CHEN Xiaodong, WANG Dexiang, GUO Feng, LI Xinming, JIANG Jingliang. Modelling of circumferential surface topography of grinding wheel with random distribution of circular truncated cone abrasive grains[J]. Diamond & Abrasives Engineering, 2025, 45(3): 408-415. doi: 10.13394/j.cnki.jgszz.2024.0086
Citation: CHEN Xiaodong, WANG Dexiang, GUO Feng, LI Xinming, JIANG Jingliang. Modelling of circumferential surface topography of grinding wheel with random distribution of circular truncated cone abrasive grains[J]. Diamond & Abrasives Engineering, 2025, 45(3): 408-415. doi: 10.13394/j.cnki.jgszz.2024.0086

圆台磨粒随机分布的砂轮圆周表面形貌建模

doi: 10.13394/j.cnki.jgszz.2024.0086
基金项目: 山东省自然科学基金(ZR2022ME208)。
详细信息
    通讯作者:

    王德祥,男,1988年生,副教授。主要研究方向:磨削加工。E-mail:wangdexiang830@126.com

  • 中图分类号: TG580; TG74

Modelling of circumferential surface topography of grinding wheel with random distribution of circular truncated cone abrasive grains

  • 摘要: 砂轮圆周表面形貌的准确建模是研究磨削加工机理的重要基础。将刚玉磨粒形状设定为有45°锥角的圆台形,推导在砂轮圆周表面随机分布的圆台磨粒的位置坐标,构建磨粒尺寸和磨粒凸起高度符合正态分布的圆台磨粒模型,并采用碰撞检测方法检测是否存在磨粒干涉现象,最终生成符合真实工况的砂轮圆周表面形貌模型。结果表明:理论计算的磨粒数与砂轮圆周表面形貌模型的磨粒数比较,其相对误差仅为7.66%;磨粒尺寸分布和磨粒凸起高度分布与建模时设定的正态分布曲线有很好的一致性;磨粒位置呈无规则的随机分布,且砂轮圆周表面形成了无规则的块状和带状间隙区域,证明提出的建模方法可有效生成与真实砂轮具有较高相似度的圆周表面形貌。

     

  • 图  1  45°锥角圆台磨粒模型[18]

    Figure  1.  Circular truncated cone abrasive grain model with 45°cone angle[18]

    图  2  不同轴向高度下的半径变化关系

    Figure  2.  Radius variation at different axial heights

    图  3  圆台磨粒三维模型

    Figure  3.  Circular truncated cone abrasive grain 3D model

    图  4  磨粒尺寸分布示意图

    Figure  4.  Schematic diagram of grain size distribution

    图  5  磨粒凸起高度分布示意图

    Figure  5.  Schematic diagram of grain protruding height distribution

    图  6  砂轮圆周表面

    Figure  6.  Circumferential surface of grinding wheel

    图  7  随机分布的磨粒位置坐标

    Figure  7.  Random distribution of abrasive particle position coordinates

    图  8  未施加凸起高度的砂轮表面示意图

    Figure  8.  Schematic diagram of grinding wheel surface without exerted protrusion heights

    图  9  施加凸起高度的砂轮表面示意图

    Figure  9.  Schematic diagram of grinding wheel surface with exerted protruding heights

    图  10  砂轮圆周表面形貌建模流程图

    Figure  10.  Modelling flow chart of circumferential surface topography of grinding wheel

    图  11  建立的砂轮圆周表面形貌模型及其局部放大图

    Figure  11.  Established model of circumferential surface topography of grinding wheel and local enlarged image of model

    图  12  磨粒尺寸分布统计图

    Figure  12.  Statistical diagram of abrasive grain size distribution

    图  13  磨粒凸起高度分布统计图

    Figure  13.  Statistical diagram of abrasive grain protruding height distribution

    图  14  真实陶瓷刚玉砂轮表面形貌[22]

    Figure  14.  Real surface topography of SG wheel[22]

    图  15  本研究构建的砂轮表面形貌

    Figure  15.  Surface morphology of grinding wheel constructed in this study

  • [1] ZHONG Z W. Advanced polishing, grinding and finishing processes for various manufacturing applications: A review [J]. Materials and Manufacturing Processes,2020,35(12):1279-1303. doi: 10.1080/10426914.2020.1772481
    [2] CAO Y, YIN J F, DING W F, et al. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of inconel 718 nickel-based superalloy [J]. Journal of Materials Processing Technology,2021,297:117241. doi: 10.1016/j.jmatprotec.2021.117241
    [3] DURGUMAHANTI U S P, SINGH V, RAO P V. A new model for grinding force prediction and analysis [J]. International Journal of Machine Tools and Manufacture,2010,50: (3):231-241. doi: 10.1016/j.ijmachtools.2009.12.004
    [4] MENG Q Y, GUO B, ZHAO Q L, et al. Modelling of grinding mech-anics: A review [J]. Chinese Journal of Aeronautics,2023,36(7):25-39. doi: 10.1016/j.cja.2022.10.006
    [5] 王德祥, 孙树峰, 颜丙亮, 等. 已加工表面热源模型研究及磨削温度场数值模拟 [J]. 西安交通大学学报,2018,52(4):84-89. doi: 10.7652/xjtuxb201804012

    WANG Dexiang, SUN Shufeng, YAN Bingliang, et al. Modeling of heat source on machined surface and numerical simulation for grinding temperature field [J]. Journal of Xi’an Jiaotong University,2018,52(4):84-89. doi: 10.7652/xjtuxb201804012
    [6] LAN S L, JIAO F. Modeling of heat source in grinding zone and numerical simulation for grinding temperature field [J]. The International Journal of Advanced Manufacturing Technology,2019,103(5/6/7/8):3077-3086. doi: 10.1007/s00170-019-03662-w
    [7] NIE Z G, WANG G, WANG L P, et al. A coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed abrasive grains [J]. Journal of Manufacturing Science and Engineering,2019,141(8):081005. doi: 10.1115/1.4043799
    [8] WU Z H, ZHANG L C. Analytical grinding force prediction with random abrasive grains of grinding wheels [J]. International Journal of Mechanical Sciences,2023,250:108310. doi: 10.1016/j.ijmecsci.2023.108310
    [9] 言兰. 基于单颗磨粒切削的淬硬模具钢磨削机理研究 [D]. 长沙: 湖南大学, 2010.

    YAN Lan. Research on grinding mechanism of hardened cold-work die steel based on single grin cutting [D]. Changsha: Hunan University, 2010.
    [10] LIU M Z, LI C H, ZHANG Y B, et al. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics [J]. Chinese Journal of Aeronautics,2023,36(7):160-193. doi: 10.1016/j.cja.2022.11.005
    [11] MA Z L, WANG Q H, CHEN H, et al. A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic [J]. Journal of Materials Processing Technology,2022,302:117492. doi: 10.1016/j.jmatprotec.2022.117492
    [12] ZHANG Y B, LI C H, JI H J, et al. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms [J]. International Journal of Machine Tools and Manufacture,2017,122:81-97. doi: 10.1016/j.ijmachtools.2017.06.002
    [13] JAMSHIDI H, GURTAN M, BUDAK E. Identification of active number of grits and its effects on mechanics and dynamics of abrasive processes [J]. Journal of Materials Processing Technology,2019,273:116239. doi: 10.1016/j.jmatprotec.2019.05.020
    [14] WANG D X, GE P Q, BI W B, et al. Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition [J]. The International Journal of Advanced Manufacturing Technology,2014,70(9):2111-2123. doi: 10.1007/s00170-013-5428-5
    [15] 王胜. 纳米粒子射流微量润滑磨削表面形貌创成机理与实验研究[D]. 青岛: 青岛理工大学, 2013.

    WANG Sheng. Generating mechanism and experimental investigation on surface topography in the grinding process using MQL by nanopaticles jet [D]. Qingdao: Qingdao University of Technology, 2013.
    [16] LIU W, DENG Z, SHANG Y, et al. Parametric evaluation and three-dimensional modelling for surface topography of grinding wheel [J]. International Journal of Mechanical Sciences,2019,155:334-342. doi: 10.1016/j.ijmecsci.2019.03.006
    [17] 陈豪, 赵继, 徐秀玲, 等. 基于凸多面体碰撞检测的虚拟砂轮建模研究 [J]. 中国机械工程,2022,33(2):127-133. doi: 10.3969/j.issn.1004-132X.2022.02.001

    CHEN Hao, ZHAO Ji, XU Xiuling, et al. Research on virtual grinding wheel modeling based on convex polyhedron collision detection [J]. China Mechanical Engineering,2022,33(2):127-133. doi: 10.3969/j.issn.1004-132X.2022.02.001
    [18] LIU Y M, WARKENTIN A, BAUER R, et al. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations [J]. Precision Engineering,2013,37(3):758-764. doi: 10.1016/j.precisioneng.2013.02.009
    [19] PAWLUS P, REIZER R, KROLCZYK G M. Modelling and prediction of surface textures after abrasive machining processes: A review [J]. Measurement,2023,220:113337. doi: 10.1016/j.measurement.2023.113337
    [20] KOSHY P, IVES L K, JAHANMIR S. Simulation of diamond-ground surface [J]. International Journal of Machine Tools and Manufacture,1999,39(9):1451-1470. doi: 10.1016/S0890-6955(99)00002-4
    [21] WANG S, LI C H, ZHANG D K, et al. Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication [J]. The International Journal of Advanced Manufacturing Technology,2014,74(5/6/7/8):835-850. doi: 10.1007/s00170-014-6032-z
    [22] TAWAKOLI T, HADAD M J, SADEGHI M H. Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant-lubricant types [J]. International Journal of Machine Tools and Manufacture,2010,50(8):698-708. doi: 10.1016/j.ijmachtools.2010.04.009
  • 加载中
图(15)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-18
  • 录用日期:  2024-08-02
  • 刊出日期:  2025-06-20

目录

    /

    返回文章
    返回