CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
WANG Hongliang, LI Songhua, JIN Chi, TIAN Kai, GUO Hao, ZHAO Zichen. Ultra-precision machining test of diamond sand belt for Si3N4 ceramic cylindrical roller[J]. Diamond & Abrasives Engineering, 2025, 45(4): 496-503. doi: 10.13394/j.cnki.jgszz.2024.0106
Citation: WANG Hongliang, LI Songhua, JIN Chi, TIAN Kai, GUO Hao, ZHAO Zichen. Ultra-precision machining test of diamond sand belt for Si3N4 ceramic cylindrical roller[J]. Diamond & Abrasives Engineering, 2025, 45(4): 496-503. doi: 10.13394/j.cnki.jgszz.2024.0106

Ultra-precision machining test of diamond sand belt for Si3N4 ceramic cylindrical roller

doi: 10.13394/j.cnki.jgszz.2024.0106
More Information
  • Received Date: 2024-07-05
  • Rev Recd Date: 2024-08-15
  •   Objectives  Si3N4 ceramic cylindrical rollers show excellent service performance in extreme working conditions, but their hardness and brittleness and other characteristics lead to difficulties in machining. To realize high-quality and highly flexible machining and manufacturing of Si3N4 ceramic cylindrical rollers, a diamond abrasive belt super-finishing machining method for Si3N4 ceramic cylindrical rollers is proposed.   Methods  By building an ultra precision machining experimental platform with a diamond abrasive belt, designing orthogonal experiments, and conducting horizontal response analysis and ANOVA on the experimental data, the influences of abrasive particle size in the diamond abrasive belt, abrasive belt linear velocity, abrasive belt pressure and guide roller speed on the surface roughness Ra and the material removal rate RMRR of Si3N4 ceramic cylindrical roller workpieces (ϕ 10 mm × 12 mm) are studied.   Results  The effects of abrasive grain size in the diamond abrasive belt on both surface roughness and material removal rate of the workpiece are the most significant. The effects of diamond abrasive belt pressure on the surface roughness of the workpiece are larger compared to those of diamond abrasive belt linear speed and guide roller rotational speed, while the effects of diamond abrasive belt linear speed on material removal rate are larger compared to those of diamond abrasive belt pressure and guide roller rotational speed. The minimum value of surface roughness of the workpiece is 0.0452 μm when the grain size code of the diamond belt is P3000, the linear speed of the diamond belt is 10 m/s, the pressure of the diamond belt is 94 N, and the rotational speed of the guide roller is 300 r/min; the minimum surface roughness of the workpiece is also 0.045 2 μm when the grain size code of the diamond belt is P2000, the linear speed of the diamond belt is 20 m/s, the pressure of the diamond belt is 94 N, the rotational speed of the guide roller is 200 r/min. When the rotational speed is 200 r/min, the maximum material removal rate is 1.075 31 μm/min.   Conclusions  The surface quality of Si3N4 ceramic cylindrical rollers can be effectively improved by using the superfinishing method with a diamond abrasive belt.

     

  • loading
  • [1]
    何加群. 论我国重大技术装备轴承的自主安全可控 [J]. 轴承, 2022(1): 1-17. doi: 10.19533/j.issn1000-3762.2022.01.001

    HE Jiaqun. On the independent safety and control of bearings for major technical equipment in China [J]. Bearing, 2022(1): 1-17. doi: 10.19533/j.issn1000-3762.2022.01.001
    [2]
    姚齐水, 杨文, 余江鸿, 等. 弹性复合圆柱滚子轴承结构设计研究 [J]. 中国机械工程, 2012, 23(24): 2899-2902. doi: 10.3969/j.issn.1004-132X.2012.24.001

    YAO Qishui, YANG Wen, YU Jianghong, et al. Research on structure design of elastic composite cylindrical roller bearing [J]. China Mechanical Engineering, 2012, 23(24): 2899-2902. doi: 10.3969/j.issn.1004-132X.2012.24.001
    [3]
    魏延刚, 张松哲. 钢制和陶瓷圆柱滚子轴承高速性能的有限元分析 [J]. 机械设计, 2007(7): 48-50. doi: 10.3969/j.issn.1001-2354.2007.07.016

    WEI Yangang, ZHANG Songzhe. Finite element analysis of high-speed performance of steel and ceramic cylindrical roller bearings [J]. Mechanical Design, 2007(7): 48-50. doi: 10.3969/j.issn.1001-2354.2007.07.016
    [4]
    REJITHA R, KESAVAN D, CHAKRAVARTHY P, et al. Bearings for aerospace applications [J]. Tribology International, 2023, 181: 1-24. doi: 10.1016/j.triboint.2023.108312
    [5]
    GUO L, HENK M, THIJS N, et al. Study on the electric discharge behaviour of a single contact in EV motor bearings [J]. Tribology International, 2023, 187: 1-10. doi: 10.1016/j.triboint.2023.108743
    [6]
    李颂华, 魏超, 吴玉厚, 等. 面向极端工况的Si3N4全陶瓷轴承关键技术与研究进展 [J]. 轴承, 2023(9): 1-10. doi: 10.19533/j.issn1000-3762.2023.09.001

    LI Songhua, WEI Chao, WU Yuhou, et al. Key technology and research progress of Si3N4 all-ceramic bearings for extreme working conditions [J]. Bearing, 2023(9): 1-10. doi: 10.19533/j.issn1000-3762.2023.09.001
    [7]
    ZHANG X C, WU D, XIA Z F, et al. Study on surface fatigue and metamorphic layer of raceway of hybrid ceramic ball bearing in high-speed spindle for machine tool [J]. Engineering Failure Analysis, 2023, 143: 106928. doi: 10.1016/j.engfailanal.2022.106928
    [8]
    HUAN J, LI S H, XIA Z X, et al. Experimental study on electric corrosion damage of bearing and solution [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(19): 10349-10358. doi: 10.1177/09544062221100328
    [9]
    刘丽斌, 于琦, 万磊, 等. 一种陶瓷圆柱滚子的生产加工方法: CN202010688210. X [P]. 2020-12-01.

    LIU Libin, YU Qi, WAN Lei, et al. A production and processing method of ceramic cylindrical roller: CN202010688210X [P]. 2020-12-01.
    [10]
    WANG X F, LI X H, MA X L, et al. Advance on surface finishing technology of precision bearing cylindrical rollers [J]. The International Journal of Advanced Manufacturing Technology, 2023, 131(5/6): 2341-2363. doi: 10.1007/s00170-023-11595-8
    [11]
    黄贺利, 李颂华, 吴玉厚, 等. 双平面研磨Si3N4圆柱滚子的表面质量 [J]. 金刚石与磨料磨具工程, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165

    HUANG Heli, LI Songhua, WU Yuhou, et al. Surface quality of double plane ground Si3N4 cylindrical rollers [J]. Diamond and Abrasives Engineering, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165
    [12]
    HE C L, ZHANG J, GENG K, et al. Advances in ultra-precision machining of bearing rolling elements [J]. The International Journal of Advanced Manufacturing Technology, 2022, 122(9/10): 3493-3524. doi: 10.1007/s00170-022-10086-6
    [13]
    周兆忠, 李兴林, 居冰峰, 等. 陶瓷圆柱滚子超精研磨工艺试验 [J]. 轴承, 2015(12): 14-18. doi: 10.3969/j.issn.1000-3762.2015.12.004

    ZHOU Zhaozhong, LI Xinglin, JU Bingfeng, et al. Experiment on superfine grinding process of ceramic cylindrical roller [J]. Bearing, 2015(12): 14-18. doi: 10.3969/j.issn.1000-3762.2015.12.004
    [14]
    LI S C, XIAO G J, WANG Y X, et al. Multi-dimensional ultrasonic-assisted belt grinding on the surface integrity of Inconel 718 [J]. Journal of Manufacturing Processes, 2023(102): 700-717. doi: 10.1016/j.jmapro.2023.08.005
    [15]
    HUANG Y, LIU G, XIAO G J, et al. Abrasive belt grinding force and its influence on surface integrity [J]. Materials and Manufacturing Processes, 2023, 38(7): 888-897. doi: 10.1080/10426914.2022.2116042
    [16]
    刘志环, 王进保, 陆安. 超硬材料砂带的研究现状和发展趋势 [J]. 超硬材料工程, 2008, 20(6): 48-52. doi: 10.3969/j.issn.1673-1433.2008.06.012

    LIU Zhihuan, WANG Jinbao, LU An. Research status and development trends of superhard material abrasive belts [J]. Superhard Material Engineering, 2008, 20(6): 48-52. doi: 10.3969/j.issn.1673-1433.2008.06.012
    [17]
    黄云. 砂带磨削技术的研究现状和发展方向简介 [J]. 金刚石与磨料磨具工程, 2020, 40(3): 1-4. doi: 10.3969/j.issn.1006-852X.2020.03.001

    HUANG Yun. Brief introduction to the research status and development direction of abrasive belt grinding technology [J]. Diamond and Abrasives Engineering, 2020, 40(3): 1-4. doi: 10.3969/j.issn.1006-852X.2020.03.001
    [18]
    王光祖, 崔仲鸣, 冯常财. 金刚石砂带的工程应用 [J]. 超硬材料工程, 2021, 33(2): 35-38. doi: 10.3969/j.issn.1673-1433.2021.02.011

    WANG Guangzu, CUI Zhongming, FENG Changcai. Engineering application of diamond abrasive belts [J]. Superabrasives Engineering, 2021, 33(2): 35-38. doi: 10.3969/j.issn.1673-1433.2021.02.011
    [19]
    张叠, 黄云. ZrO2工程陶瓷砂带磨削实验及工艺研究 [J]. 机械科学与技术, 2015, 34(12): 1966-1970. doi: 10.13433/j.cnki.1003-8728.2015.1230

    ZHANG Die, HUANG Yun. Experimental and process research on belt grinding of ZrO2 engineering ceramics [J]. Mechanical Science and Technology, 2015, 34(12): 1966-1970. doi: 10.13433/j.cnki.1003-8728.2015.1230
    [20]
    高超, 王生, 吴国荣, 等. 电镀金刚石砂带磨削氧化铝陶瓷的试验研究 [J]. 工具技术, 2017, 51(10): 40-43. doi: 10.3969/j.issn.1000-7008.2017.10.010

    GAO Chao, WANG Sheng, WU Guorong, et al. Experimental study on grinding alumina ceramics with electroplated diamond abrasive belts [J]. Tool Technology, 2017, 51(10): 40-43. doi: 10.3969/j.issn.1000-7008.2017.10.010
    [21]
    LI H, ZOU L, LI Z R, et al. Investigation on abrasive wear of electroplated diamond belt in grinding nickel-based superalloys [J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(7/8): 4419-4429. doi: 10.1007/s00170-022-09468-7
    [22]
    ZHOU K, XIAO G J, XU J Y, et al. Wear evolution of electroplated diamond abrasive belt and corresponding surface integrity of Inconel 718 during grinding [J]. Tribology International, 2023, 177: 1-14. doi: 10.1016/j.triboint.2022.107972
    [23]
    GONG H, ZHANG Z G, LIAN M L, et al. Design and verification of flexible belt grinding system for SiC mirror [C]// Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 2021: 12169B.1-12169B.8.
    [24]
    STADNIK T, SIDOROV D, KHARCHENKO A. Investigation of diamond elastic belts characteristics effect on rotary belt grinding process output performance [J]. Procedia Engineering, 2017, 206: 1415-1418. doi: 10.1016/j.proeng.2017.10.654
    [25]
    SYREYSHCHIKOVA N V, PIMENOV D Y, GUPTA M K, et al. Relationship between pressure and output parameters in belt grinding of steels and nickel alloy [J]. Materials (Basel), 2021, 14(4704): 1-14. doi: 10.3390/MA14164704
    [26]
    ZHAO J B, WANG S, YIN H, et al. Investigation of influence function model and polished surface characteristics during belt polishing polycrystalline aluminate magnesium spinel (PAMS) ceramics [J]. Journal of Materials Processing Technology, 2023, 320: 1-17. doi: 10.1016/j.jmatprotec.2023.118129
    [27]
    黄云. 现代砂带磨削技术及工程应用 [M]. 重庆: 重庆大学出版社, 2009: 83-89.

    HUANG Yun. Modern belt grinding technology and engineering applications [M]. Chongqing: Chongqing University Press, 2009: 83-89.
    [28]
    李伯民, 赵波. 现代磨削技术 [M]. 北京: 机械工业出版社, 2003.

    LI Bomin, ZHAO Bo. Modern grinding technology [M]. Beijing: China Machine Press, 2003.
    [29]
    王生, 高超, 吴国荣, 等. 基于电镀金刚石砂带的钢化玻璃磨边试验研究 [J]. 工具技术, 2017, 51(11): 41-45. doi: 10.3969/j.issn.1000-7008.2017.11.009

    WANG Sheng, GAO Chao, WU Guorong, et al. Experimental study on tempered glass edging based on electroplated diamond abrasive belt [J]. Tool Technology, 2017, 51(11): 41-45. doi: 10.3969/j.issn.1000-7008.2017.11.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (29) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return