CN 41-1243/TG ISSN 1006-852X
ZHANG Haitao, BAO Yan, YANG Feng, SUN Haiqi, DONG Zhigang, KANG Renke. Ultrasonic assisted helical grinding of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 81-87. doi: 10.13394/j.cnki.jgszz.2021.0107
Citation: ZHANG Haitao, BAO Yan, YANG Feng, SUN Haiqi, DONG Zhigang, KANG Renke. Ultrasonic assisted helical grinding of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 81-87. doi: 10.13394/j.cnki.jgszz.2021.0107

Ultrasonic assisted helical grinding of SiCf/SiC ceramic matrix composites

doi: 10.13394/j.cnki.jgszz.2021.0107
More Information
  • Received Date: 2021-10-12
  • Accepted Date: 2021-12-20
  • Rev Recd Date: 2021-12-02
  • Available Online: 2022-03-17
  • SiC fiber reinforced SiC ceramic matrix composites (SiCf/SiC) have problems such as poor machining quality and difficult material removal. To study these problems, SiCf/SiC composites were processed by ultrasonic-assisted helical grinding. The exit quality of hole, hole wall morphology and three-dimensional surface roughness of hole wall were explored. The results show that compared with traditional hole making, the material at the exit of the hole made by ultrasonic-assisted helical grinding has no large area chipping. The periodic change of the angle θ between the direction of the cutting speed of the grinding wheel and the fiber direction leads to regular changes in the surface morphology of the hole wall. When θ is 0°/180°, the fiber and the matrix are debonded. When θ is 45°, the fiber is sheared and fractured. When θ is 90°, the fiber is crushed and fractured. When θ is 135°, the fiber has both shear fracture and extrusion fracture. The hole wall surface roughness Sa is the lowest value when θ is 90°, and Sa is the highest value when θ is 135°. Within a certain range, the surface roughness value Sa decreases with the increase of the ultrasonic amplitude, with a maximum decrease of 38.7%, and increases with the increase of the feed rate, with a maximum increase of 39.3%.

     

  • [1]
    NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview [J]. Composites Science and Technology,2004,64(2):155-170. doi: 10.1016/S0266-3538(03)00230-6
    [2]
    王超, 李凯娜, 陈虎, 等. 纤维增强陶瓷基复合材料加工技术研究进展 [J]. 航空制造技术,2016,59(3):55-60.

    WANG Chao, LI Kaina, CHEN Hu, et al. Research progress of processing technology for fiber reinforced matrix composites [J]. Journal of Materials Processing Technology,2016,59(3):55-60.
    [3]
    BHARADWAJ L, FAN Y, ZHANG L G, et al. Oxidation behavior of a fully dense polymer-derived amorphous silicon carbonitride ceramic [J]. Journal of the American Ceramic Society,2004,87(3):483-486. doi: 10.1111/j.1551-2916.2004.00483.x
    [4]
    DING K, FU Y, SU H, et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining [J]. Journal of Materials Processing Technology,2014,214(12):2900-2907. doi: 10.1016/j.jmatprotec.2014.06.015
    [5]
    丁凯, 苏宏华, 傅玉灿, 等. 陶瓷基复合材料超声辅助加工技术 [J]. 航空制造技术,2016,59(15):42-49.

    DING Kai, SU Honghua, FU Yucan, et al. Ultrasonic assisted machining of ceramic matrix composites [J]. Aeronautical Manufacturing Technology,2016,59(15):42-49.
    [6]
    TAWAKOLI T, AZARHOUSHANG B. Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel [J]. International Journal of Machine Tools & Manufacture,2011,51(2):112-119.
    [7]
    LUNA G G, AXINTE D, NOVOVIC D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC ceramic matrix composites (CMCs) [J]. International Journal of Machine Tools & Manufacture,2020,157(9/10/11/12):103580.
    [8]
    BERTSCHE E, EHMANN K, MALUKHIN K. Ultrasonic slot machining of a silicon carbide matrix composite [J]. International Journal of Advanced Manufacturing Technology,2013,66(5/6/7/8):1119-1134. doi: 10.1007/s00170-012-4394-7
    [9]
    张园, 康仁科, 刘津廷, 等. 超声振动辅助钻削技术综述 [J]. 机械工程学报,2017,53(19):33-44. doi: 10.3901/JME.2017.19.033

    ZHANG Yuan, KANG Renke, LIU Jinting, et al. Review of ultrasonic vibration assisted drilling [J]. Journal of Mechanical Engineering,2017,53(19):33-44. doi: 10.3901/JME.2017.19.033
    [10]
    林佳杰, 魏昕, 杨宇辉, 等. 超声螺旋磨削制孔磨削力建模与实验研究 [J]. 组合机床与自动化加工技术, 2021(4): 53-56.

    LIN Jiajie, WEI Xin, YANG Yuhui, et al. Study on cutting force of ultrasonic assisted helical grinding for hole making [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(4): 53-56.
    [11]
    LI Z, JIAO Y, DEINES T, et al. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments [J]. International Journal of Machine Tools & Manufacture,2005,45(12/13):1402-1411.
    [12]
    陈玉荣, 苏宏华, 傅玉灿, 等. 超声振动辅助干式钻削SiCf/SiC陶瓷基复合材料试验研究 [J]. 航空制造技术,2018,61(21):47-51.

    CHEN Yurong, SU Honghua, FU Yucan, et al. Experimental study on ultrasonic vibration assisted dry drilling for SiCf/SiC ceramic matrix composites [J]. Aeronautical Manufacturing Technology,2018,61(21):47-51.
    [13]
    吴雪峰, 苑忠亮. 氮化硅陶瓷加热辅助铣削过程中边缘碎裂实验与仿真[J]. 哈尔滨理工大学学报, 2017, 22(5): 1-6.

    WU Xuefeng, YUAN Zhongliang. Experiment and simulation analysis of edge chipping in laser assisted milling of silicon nitride[J]. Journal of Harbin University of Science and Technology, 2017, 22(5): 1-6.
    [14]
    王欢. 钛合金螺旋铣孔试验研究 [D]. 大连: 大连理工大学, 2015.

    WANG Huan. Experimental study on helical milling of titanium alloy [D]. Dalian: Dalian University of Technology, 2015.
    [15]
    徐雳, 刘冰, 吴石, 等. 双面研磨/抛光机磨削轨迹研究[J]. 哈尔滨理工大学学报, 2018, 23(4): 37-42.

    XU Li, LIU Bing, WU Shi, et al. Double sided lapping/polishing machine grinding trajectory studies[J]. Journal of Harbin University of Science and Technology, 2018, 23(4): 37-42.
    [16]
    WANG J, ZHANG J, FENG P. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites [J]. Composites Part B: Engineering,2017,129:233-242. doi: 10.1016/j.compositesb.2017.07.081
  • Relative Articles

    [1]LIU Yamei, WANG Jiali, GU Yan, WU Shuang, LI Zhen. Research of brittle-plastic behavior of SiCp/Al composites based on nano-indentation/scratch[J]. Diamond & Abrasives Engineering, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165
    [2]SHI Shuhao, YANG Li, GUO Shenghui, GAO Jiyun, HOU Ming, LU Yuanjia. Preparation of Ti3SiC2/diamond composites by Ni-Al assisted microwave self-propagating sintering[J]. Diamond & Abrasives Engineering, 2024, 44(1): 22-30. doi: 10.13394/j.cnki.jgszz.2023.0021
    [3]WANG Youzhe, LIU Yao, ZHOU Yang, LI Jiahao, LI Hansen. Experiment on single diamond abrasive scratching 2D SiCf/SiC composite materials[J]. Diamond & Abrasives Engineering, 2024, 44(3): 335-345. doi: 10.13394/j.cnki.jgszz.2023.0275
    [4]WEN Jiazhou, WANG Qingxia, YU Aiwu, WU Chongjun. Removal mechanism of unidirectional Cf/SiC composites based on single diamond grit scratching[J]. Diamond & Abrasives Engineering, 2024, 44(3): 327-334. doi: 10.13394/j.cnki.jgszz.2023.0104
    [5]LIN Jieqiong, JIA Ru, ZHOU Yan, GU Yan. PCD tool wear in cutting SiCp/6005Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143
    [6]PANG Jiwei, LI Sheng, GUO Mingbo, WANG Zhaohui, XI Jianren, YANG Xiaotao. Drilling of C/SiC composite micro holes with electroplated diamond bits[J]. Diamond & Abrasives Engineering, 2023, 43(1): 90-95. doi: 10.13394/j.cnki.jgszz.2022.0026
    [7]CAI Jianing, LE Chen, FAN Zimin, LI Xin, TANG Mingqiang, ZHAO Fang. Influence of hot-pressed sintering temperature on properties of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(5): 546-552. doi: 10.13394/j.cnki.jgszz.2022.0105
    [8]CAO Guixin, DONG Zhiguo, ZHANG Zehua, HOU Zhangmin. Model construction and experimental research on end grinding force of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 340-347. doi: 10.13394/j.cnki.jgszz.2022.0112
    [9]CAI Jianing, FAN Zimin, LE Chen, LI Xin, TANG Mingqiang, ZHAO Fang. Effect of SiC content on properties of copper matrix composites[J]. Diamond & Abrasives Engineering, 2023, 43(6): 743-749. doi: 10.13394/j.cnki.jgszz.2022.0183
    [10]KANG Huiyuan, KANG Aolong, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Configuration design and thermal conductivity of diamond-SiC/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015
    [11]SHAO Guodong, SHI Zhenyu. Effect of chips on drilling process when drilling C/SiC ceramic matrix composite holes with brazed diamond abrasive drill[J]. Diamond & Abrasives Engineering, 2022, 42(3): 348-355. doi: 10.13394/j.cnki.jgszz.2021.0212
    [12]SUN Baoyu, FU Xingbao, YUAN Xu, GU Yan. Research on ultrasonic vibration grinding technology of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016
    [13]GAO Wei, ZHANG Yinxia, HUANG Pengju. Study on material removal mechanism of 6H-SiC single crystal wafer based on different nano-scratch order[J]. Diamond & Abrasives Engineering, 2021, 41(4): 92-97. doi: 10.13394/j.cnki.jgszz.2021.4.0013
    [14]ZHOU Wenwen, WANG Jianqing, ZHAO Jing, LIU Yao. Experimental research on single abrasive grain scratch SiCf/SiC ceramic matrix composite[J]. Diamond & Abrasives Engineering, 2021, 41(1): 51-57. doi: 10.13394/j.cnki.jgszz.2021.1.0009
    [15]ZHANG Lingjie, ZHANG Wangxi, LIANG Baoyan. Fabrication TiC/Ti3SiC2-diamond composites by spark plasma sintering using different binder[J]. Diamond & Abrasives Engineering, 2020, 40(1): 46-49. doi: 10.13394/j.cnki.jgszz.2020.1.0007
    [16]XU Luxin, LI Hua, CAI Xiaotong, ZHOU Peixiang, CHEN Yiwen, WU Jiafu. Study on surface quality in ultrasonic vibration grinding of SiC ceramics with small diameter grinding wheel[J]. Diamond & Abrasives Engineering, 2020, 40(2): 67-77. doi: 10.13394/j.cnki.jgszz.2020.2.0012
    [17]YUAN Dongfang, ZOU Qin, LI Yanguo, WANG Mingzhi. Study on wear resistance of Ti3SiC2 composite materials[J]. Diamond & Abrasives Engineering, 2019, 39(6): 30-38. doi: 10.13394/j.cnki.jgszz.2019.6.0006
    [18]LI Long, GE Peiqi, WANG Peizhi, LI Zongqiang. Abrasive machining simulation technology for hard-brittle materials[J]. Diamond & Abrasives Engineering, 2019, 39(3): 81-87. doi: 10.13394/j.cnki.jgszz.2019.3.0013
    [19]KANG Renke, ZHAO Fan, BAO Yan, ZHU Xianglong, DONG Zhigang. Ultrasonic assisted grinding of SiCf/SiC composites[J]. Diamond & Abrasives Engineering, 2019, 39(4): 85-91. doi: 10.13394/j.cnki.jgszz.2019.4.0015
    [20]ZHANG Wangxi, XIA Tao, LUO Wei, LIANG Baoyan. Fabricating Ti3SiC2-diamond composites by spark plasma sintering induced self-propagation reaction[J]. Diamond & Abrasives Engineering, 2017, 37(1): 43-46. doi: 10.13394/j.cnki.jgszz.2017.1.0008
  • Cited by

    Periodical cited type(2)

    1. 张文超,崔恩铭,张保全,王明伟. 微晶玻璃超声辅助磨削制孔工艺参数对表面质量及出口崩边的影响研究. 电加工与模具. 2024(S1): 55-59+63 .
    2. 董志刚,王中旺,康仁科,马浩南,鲍岩. 陶瓷基复合材料超声辅助磨削力建模的研究进展. 电加工与模具. 2023(04): 1-12+19 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 57.5 %META: 57.5 %PDF: 6.4 %PDF: 6.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.4 %其他: 10.4 %其他: 0.9 %其他: 0.9 %Central District: 0.1 %Central District: 0.1 %China: 0.3 %China: 0.3 %Jaipur: 0.1 %Jaipur: 0.1 %Koesan: 0.2 %Koesan: 0.2 %Korea Republic of: 0.5 %Korea Republic of: 0.5 %Thane: 0.1 %Thane: 0.1 %Wixom: 0.1 %Wixom: 0.1 %[]: 0.3 %[]: 0.3 %三门峡: 0.1 %三门峡: 0.1 %上海: 2.1 %上海: 2.1 %东莞: 0.2 %东莞: 0.2 %信阳: 0.1 %信阳: 0.1 %内江: 0.1 %内江: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 1.8 %北京: 1.8 %十堰: 0.2 %十堰: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南京: 2.0 %南京: 2.0 %厦门: 0.2 %厦门: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.5 %合肥: 0.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 2.4 %大连: 2.4 %天津: 1.6 %天津: 1.6 %太原: 0.7 %太原: 0.7 %威海: 0.2 %威海: 0.2 %孝感: 0.1 %孝感: 0.1 %宁波: 0.2 %宁波: 0.2 %宣城: 0.2 %宣城: 0.2 %屏东: 0.3 %屏东: 0.3 %常州: 0.9 %常州: 0.9 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 2.2 %张家口: 2.2 %成都: 0.6 %成都: 0.6 %扬州: 0.3 %扬州: 0.3 %新乡: 0.3 %新乡: 0.3 %无锡: 0.6 %无锡: 0.6 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.6 %杭州: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.1 %池州: 0.1 %沈阳: 1.1 %沈阳: 1.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.6 %济南: 0.6 %淄博: 0.1 %淄博: 0.1 %深圳: 5.0 %深圳: 5.0 %温州: 0.3 %温州: 0.3 %湘潭: 0.4 %湘潭: 0.4 %湘西: 8.2 %湘西: 8.2 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 0.7 %苏州: 0.7 %莫斯科: 1.1 %莫斯科: 1.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %西宁: 22.6 %西宁: 22.6 %西安: 0.5 %西安: 0.5 %西雅图: 0.7 %西雅图: 0.7 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.1 %费利蒙: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.2 %铁岭: 0.2 %长春: 0.8 %长春: 0.8 %长沙: 3.8 %长沙: 3.8 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.5 %青岛: 0.5 %香港: 0.5 %香港: 0.5 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他Central DistrictChinaJaipurKoesanKorea Republic ofThaneWixom[]三门峡上海东莞信阳内江凤凰城北京十堰华盛顿州南京厦门台北台州合肥哈尔滨嘉兴圣彼得堡大连天津太原威海孝感宁波宣城屏东常州平顶山广州张家口成都扬州新乡无锡昆明景德镇朝阳杭州格兰特县武汉池州沈阳洛阳济南淄博深圳温州湘潭湘西漯河烟台焦作珠海石家庄福州纽约芒廷维尤芝加哥苏州莫斯科衡水衡阳西宁西安西雅图诺沃克贵阳费利蒙赣州运城连云港邯郸郑州重庆铁岭长春长沙阳泉青岛香港齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (732) PDF downloads(82) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return