CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
CUI Xiwei, QIN Yue, MAO Rongqi, HAO Jinglin, ZHAO Sizhuang, LIN Zhengde, DENG Lifen, JIANG Nan, CUI Ping. Cold compaction and crushing of diamond powders during the sintering of polycrystalline diamond[J]. Diamond & Abrasives Engineering, 2023, 43(4): 440-446. doi: 10.13394/j.cnki.jgszz.2022.0178
Citation: CUI Xiwei, QIN Yue, MAO Rongqi, HAO Jinglin, ZHAO Sizhuang, LIN Zhengde, DENG Lifen, JIANG Nan, CUI Ping. Cold compaction and crushing of diamond powders during the sintering of polycrystalline diamond[J]. Diamond & Abrasives Engineering, 2023, 43(4): 440-446. doi: 10.13394/j.cnki.jgszz.2022.0178

Cold compaction and crushing of diamond powders during the sintering of polycrystalline diamond

doi: 10.13394/j.cnki.jgszz.2022.0178
More Information
  • Received Date: 2022-10-26
  • Accepted Date: 2023-02-16
  • Rev Recd Date: 2023-02-11
  • To improve the density of polycrystalline diamond, a study was conducted to investigate the changes in diamond powder under different pressure conditions, including initial loading, cold isostatic pressing, and six-sided die pressing. The study focused on the particle size distribution, powder density, and microstructural rearrangement before and after applying pressure to different diamond powder sizes and ratios. The process involved the initial random arrangement of particles, followed by the filling of fine particles into voids and rearrangement at 220 MPa during cold isostatic pressing. Subsequently, under ultra-high pressure, large particles (G20~30) were crushed and gradually filled the voids. The buffering effect of fine particles resulted in fewer fractures in the dual particle size formula (G2~4 and G20~30) compared to the single particle size formula (G20~30), which facilitated higher stacking density of the diamond powder. These findings provide valuable data support for optimizing the particle size and ratio design of diamond powders for the high-temperature high-pressure (HPHT) synthesis of high-performance polycrystalline diamond composite.

     

  • loading
  • [1]
    YANG X, DENG F. Synthesis and characterisation of ϕ62 mm polycrystalline diamond compact [J]. Diamond & Related Materials,2019,100:107594.
    [2]
    MINORU A, SHINOBU Y, FUMIHIRO U, et al. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties [J]. Diamond & Related Materials,1996,5:2-7.
    [3]
    JOHAN E W, NATALIA D, JAN H, et al. Thermally stable polycrystalline diamond sintered with calcium carbonate [J]. Diamond & Related Materials,2007,16(11):1929-1935.
    [4]
    邹芹, 向刚强, 王瑶, 等. 聚晶金刚石的研究进展与展望 [J]. 金刚石与磨料磨具工程,2021,41(3):23-32.

    ZOU Qin, XIANG Gangqiang, WANG Yao, et al. Research progress and prospect of polycrystalline diamond [J]. Diamond & Abrasives Engineering,2021,41(3):23-32.
    [5]
    白清顺, 姚英学, ZHANG Grace, 等. 聚晶金刚石(PCD)刀具发展综述 [J]. 工具技术,2002(3):7-10.

    BAI Qingshun, YAO Yingxue, ZHANG Grace, et al. Summary of development of polycrystalline diamond (PCD) cutting tools [J]. Tool Engineering,2002(3):7-10.
    [6]
    张勤俭, 曹凤国, 王先逵. 聚晶金刚石的应用现状和发展趋势 [J]. 金刚石与磨料磨具工程,2006(1):71-74.

    ZHANG Qinjian, CAO Fengguo, WANG Xiankui. Application status and development trends of polycrystalline diamond [J]. Diamond & Abrasives Engineering,2006(1):71-74.
    [7]
    方啸虎, 崔祥仁, 谢德龙. 近年来钻探用超硬材料的发展与展望 [J]. 探矿工程, 2021, 48(S1): 18-24.

    FANG Xiaohu, CUI Xiangren, XIE Delong. Development and prospect of the super hard materials applied to the drilling industry in recent years[J].Exploration Engineering (Drilling &Tunneling), 2021, 48(S1): 18-24.
    [8]
    贾洪声, 李彦涛, 王琰弟, 等. 金刚石初始粒径对金刚石聚晶层形貌及表面残余应力的影响 [J]. 超硬材料工程,2010,22(4):21-23.

    JIA Hongsheng, LI Yantao, WANG Yandi, et al. Effect of original size of diamond on morphology and surface residual stress in polucrystalline diamond (PCD) [J]. Superhard Material Engineering,2010,22(4):21-23.
    [9]
    邓福铭, 陆绍悌, 王强, 等. 不同粒度金刚石微粉对PCD微结构与性能的影响 [J]. 超硬材料工程,2012,24(6):15-20. doi: 10.3969/j.issn.1673-1433.2012.06.004

    DENG Fuming, LU Zhaoti, WANG Qiang, et al. Effects of particle size of diamond powder in the microstructure and properties of PCD [J]. Superhard Material Engineering,2012,24(6):15-20. doi: 10.3969/j.issn.1673-1433.2012.06.004
    [10]
    LAMMER A. Mechanical properties of polycrystalline diamonds [J]. Materials Science and Technology,1988,4(11):949-955. doi: 10.1179/mst.1988.4.11.949
    [11]
    MIESS D, RAI G. Frature toughness and thermal resistance of polycrystalline diamond compacts [J]. Materials Science and Engineering A, 1996(209): 270-276
    [12]
    MCNAMARA D, ALVEEN P, CAROLAN D, et al. Fracture toughness evaluation of polycrystalline diamond as a function of microstructure [J]. Engineering Fracture Mechanics,2015,143:1-16. doi: 10.1016/j.engfracmech.2015.06.008
    [13]
    THOMAS A S. The influence of microstructure on the mechanical properties of polycrystalline diamond: A literature review [J]. Advances in Applied Ceramics,2018,117(3):161-176. doi: 10.1080/17436753.2017.1389462
    [14]
    王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量及受力分析 [J]. 物理学报,2017,66(9):68-75.

    WANG Haikuo, REN Ying, HE Duanwei, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physics Sinica,2017,66(9):68-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (222) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return