CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
LV Shicong, LIU Yin, SUN Xingwei, DONG Zhixu, YANG Heran, ZHANG Weifeng. Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics[J]. Diamond & Abrasives Engineering, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188
Citation: LV Shicong, LIU Yin, SUN Xingwei, DONG Zhixu, YANG Heran, ZHANG Weifeng. Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics[J]. Diamond & Abrasives Engineering, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188

Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics

doi: 10.13394/j.cnki.jgszz.2023.0188
More Information
  • Received Date: 2023-09-07
  • Rev Recd Date: 2024-01-23
  • Available Online: 2024-02-21
  • Objectives: Research on ceramic processing primarily focuses on areas such as single abrasive grinding methods, processing mechanisms, processing efficiency, material removal mechanisms, and surface quality. However, research on ZrO2 ceramic cutting processing is relatively insufficient. Therefore, the 3D cutting process of ZrO2 ceramic workpieces was numerically simulated using the finite element simulation method. The study discusses the mechanism of chip removal, the dynamic change and distribution of stress, and the evolution law of cutting force under various cutting conditions. Methods: The 3D cutting process of ZrO2 ceramic workpieces, under different machining parameters and tool parameters, was numerically simulated using the finite element simulation method. The cutting forces under various feed speeds and cutting depths were compared to explore the failure modes and material removal mechanisms of ZrO2 ceramic during the cutting process. Results: The hard contact behavior between the cutting tool and the workpiece significantly affects the material removal process, leading to failure modes such as chip collapse, material cracking, and crack propagation. When the cutting depth is 200 μm or 250 μm, numerous cracks appear at the end edge of the workpiece and expand in the vertical cutting direction, resulting in significant fragmentation at the edge. An increase in cutting speed will causes fluctuations in stress and cutting force, but overall, there is no significant change in cutting performance. The radius of the cutting edge affects the formation of cracks in the initial cutting stage. As the edge radius increases, the length of the crack at the front end of the tool shortens, though the impact on cutting force is not significant. A negative tool rake angle during cutting does not induce cracks in the workpiece, and it leads to better machining quality. In addition, when the tool rake angle is 0 °, the maximum cutting force increases rapidly, but the cutting force variation is not obvious with increasing rake angle. Conclusions: As the cutting depth increases, the stress layer on the tool surface gradually expands from the tip to the front and rear cutting surfaces, and gradually increases. As the cutting depth increases, local cracks form at the cutting end of the workpiece and propagate downward. The position of maximum stress on the front cutting surface of the tool gradually increases with the increase in edge radius. However, the influence of the edge radius on the cutting force is relatively small. When cutting ZrO2 ceramics with a tool featuring a negative rake angle, no internal cracks are caused, and good machining quality can be achieved.

     

  • loading
  • [1]
    任永国, 刘自强, 杨凯, 等. 氧化锆材料种类及应用 [J]. 中国陶瓷,2008(4):44-46. doi: 10.3969/j.issn.1001-9642.2008.04.014

    REN Yongguo, LIU Ziqiang, YANG Kai, et al. Types and applications of zirconia materials [J]. China Ceramics,2008(4):44-46. doi: 10.3969/j.issn.1001-9642.2008.04.014
    [2]
    AGARWAL S, RAO P V. Modeling and prediction of surface roughness in ceramic grinding [J]. International Journal of Machine Tools & Manufacture,2010,50(12):1056-1076. doi: 10.1016/j.ijmachtools.2010.08.009
    [3]
    于思远. 工程陶瓷材料的加工技术及其应用 [M]. 北京: 机械工业出版社, 2008.

    YU Siyuan. Processing technology and application of engineering ceramic materials [M]. Beijing: China Machine Press, 2008.
    [4]
    田欣利, 徐西鹏, 袁巨龙. 工程陶瓷先进加工与质量控制技术 [M]. 北京: 国防工业出版社, 2014.

    TIAN Xinli, XU Xipeng, YUAN Julong. Advanced processing and quality control technology for engineering ceramics [M]. Beijing: National Defense Industry Press, 2014.
    [5]
    REN N, XIA K, YANG H, et al. Water-assisted femtosecond laser drilling of alumina ceramics [J]. Ceramics International,2021,47(8):11465-11473. doi: 10.1016/j.ceramint.2020.12.274
    [6]
    GENG T, XU Z. Electrochemical discharge machining for fabricating holes in conductive materials: A review [J]. Journal of Advanced Manufacturing Science and Technology,2021,1(3):2021006. doi: 10.51393/j.jamst.2021006
    [7]
    KLIUEV M, MARADIA U, BOCCADORO M, et al. Experimental study of EDM-drilling and shaping of SiSiC and SiC [J]. Procedia CIRP,2016,42:191-196. doi: 10.1016/j.procir.2016.02.269
    [8]
    XU J, LI L, JI M, et al. Study on PCD tool wear in hard milling of fully-sintered 3Y-TZP ceramics [J]. Journal of Superhard Materials,2022,44:292-300. doi: 10.3103/S1063457622040098
    [9]
    WANG Z, RAJURKAR K P, MURUGAPPAN M. Cryogenic PCBN turning of ceramic (Si3N4) [J]. Wear,1996,195(1/2):1-6. doi: 10.1016/0043-1648(95)06645-4
    [10]
    ZHENG L, WEI W, FENG Y, et al. Drilling machinability of engineering ceramics under low-frequency axial vibration processing by sintering / brazing composite diamond trepanning bit [J]. Ceramics International,2019,45(9):11905-11911. doi: 10.1016/j.ceramint.2019.03.077
    [11]
    刘伟, 邓朝晖, 万林林, 等. 单颗金刚石磨粒切削氮化硅陶瓷仿真与试验研究 [J]. 机械工程学报,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191

    LIU Wei, DENG Zhaohui, WAN Linlin, et al. Simulation and experimental study on single diamond abrasive grain cutting of silicon nitride ceramics [J]. Journal of Mechanical Engineering,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191
    [12]
    宿崇, 许立, 刘元伟, 等. 基于SPH法的CBN磨粒切削过程数值模拟 [J]. 中国机械工程,2013,24(5):667-671. doi: 10.3969/j.issn.1004-132X.2013.05.021

    SU Chong, XU Li, LIU Yuanwei, et al. Numerical simulation of CBN abrasive grain cutting process based on SPH method [J]. China Mechanical Engineering,2013,24(5):667-671. doi: 10.3969/j.issn.1004-132X.2013.05.021
    [13]
    PENG Y, LIANG Z, WU Y, GUO Y et al. Characteristics of chip generation by vertical elliptic ultrasonic vibration-assisted grinding of brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2012,62:563-568. doi: 10.1007/s00170-011-3839-8
    [14]
    曹建国, 张勤俭. 碳化硅陶瓷超声振动辅助磨削材料去除特性研究 [J]. 机械工程学报,2019,55(13):205-211. doi: 10.3901/JME.2019.13.205

    CAO Jianguo, ZHANG Qinjian. Study on material removal characteristics in ultrasonic vibration-assisted grinding of silicon carbide ceramics [J]. Journal of Mechanical Engineering,2019,55(13):205-211. doi: 10.3901/JME.2019.13.205
    [15]
    刘松恺, 张午阳, 徐锦泱, 等. 基于SPH方法的氧化锆陶瓷正交切削仿真研究 [J]. 工具技术,2023,57(9):103-109. doi: 10.3969/j.issn.1000-7008.2023.09.016

    LIU Songkai, ZHANG Wuyang, XU Jinyang, et al. Simulation study of orthogonal cutting of zirconia ceramic based on SPH method [J]. Tool Engineering,2023,57(9):103-109. doi: 10.3969/j.issn.1000-7008.2023.09.016
    [16]
    何天伦, 贾乾忠, 刘明贺. 氧化锆陶瓷材料磨削表面残余应力研究与预测仿真 [J]. 机电产品开发与创新,2023,36(4):106-109. doi: 10.3969/j.issn.1002-6673.2023.04.029

    HE Tianlun, JIA Qianzhong, LIU Minghe. Research and simulation of residual stress on ground surface of zirconia ceramic materials [J]. Development and Innovation of Machinery and Electrical Products,2023,36(4):106-109. doi: 10.3969/j.issn.1002-6673.2023.04.029
    [17]
    邓泽辉. 力热耦合作用下氧化锆陶瓷精密磨削损伤仿真与实验研究 [D]. 湘潭: 湖南科技大学, 2018.

    DENG Zehui. Simulation and experimental study of damage in precision grinding of zirconia ceramics under the action of mechanothermal coupling [D]. Xiangtan: Hunan University of Science and Technology, 2018.
    [18]
    JOHNSON G R, HOLMQUIST T. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics,1999,85(12):8060-8073. doi: 10.1063/1.370643
    [19]
    杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击,2010(5):18-26. doi: 10.11883/1001-1455(2010)05-0463-09

    YANG Zhenqi, PANG Baojun, WANG Liwen, et al. The application of the JH-2 model and its application in Al2O3 ceramic low-speed impact numerical simulation [J]. Explosion and Shock Waves,2010(5):18-26. doi: 10.11883/1001-1455(2010)05-0463-09
    [20]
    HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering,2001,25(3):211-231. doi: 10.1016/S0734-743X(00)00046-4
    [21]
    熊益波, 陈剑杰, 胡永乐. 混凝土Johnson-Holmquist本构模型灵敏参数的初步确认 [J]. 兵工学报,2009,30(S2):145-148.

    XIONG Yibo, CHEN Jianjie, HU Yongle. Preliminary confirmation of sensitive parameters of the Johnson-Holmquist constitutive model for concrete [J]. Acta Armamentarii,2009,30(S2):145-148.
    [22]
    LI J, HUANG Z, LIU G, et al. An experimental and finite element investigation of chip separation criteria in metal cutting process [J]. The International Journal of Advanced Manufacturing Technology,2021,116:3877-3889. doi: 10.1007/s00170-021-07461-0
    [23]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics,1985,21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [24]
    DENG B, YANG M, ZHOU L, et al. Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics [J]. Procedia CIRP,2019,82:202-207. doi: 10.1016/j.procir.2019.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (526) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return