CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 2
May  2022
Turn off MathJax
Article Contents
HU Weidong, WANG Zhankui, Dong Yanhui, ZHANG Zhao, ZHU Yongwei. Surface morphology characterization of fixed abrasive lapping pad based on deep learning[J]. Diamond &Abrasives Engineering, 2022, 42(2): 186-192. doi: 10.13394/j.cnki.jgszz.2021.0096
Citation: HU Weidong, WANG Zhankui, Dong Yanhui, ZHANG Zhao, ZHU Yongwei. Surface morphology characterization of fixed abrasive lapping pad based on deep learning[J]. Diamond &Abrasives Engineering, 2022, 42(2): 186-192. doi: 10.13394/j.cnki.jgszz.2021.0096

Surface morphology characterization of fixed abrasive lapping pad based on deep learning

doi: 10.13394/j.cnki.jgszz.2021.0096
  • Received Date: 2021-10-24
  • Accepted Date: 2021-11-24
  • Rev Recd Date: 2021-11-20
  • The surface morphology of fixed abrasive (FA) lapping pad is closely related to its processing performance. In order to understand the surface morphology of the FA lapping pad better, particularly diamonds, pores, and pits resulting from diamond falling off, a deep learning-based method for characterizing its surface morphology was proposed. First, the Leica DVM6 digital microscope and its supporting software were adopted to obtain the surface images of the FA lapping pad; then python3+OpenCV were chosen to preprocess the images, and the labeling software Labelme was used to label the images for subsequent training and testing data set; finally, the Mask R-CNN model was built using the deep learning framework Tensorflow. The results show that the Mask R-CNN model can effectively segment and recognize multiple targets in the surface image of a single fixed abrasive pad, and the average accuracy of the main evaluation indicators reaches 78.9%, reaching the mainstream level of image recognition.

     

  • loading
  • [1]
    墨洪磊. 固结磨料研磨垫的制备工艺优化 [D]. 南京: 南京航空航天大学, 2013.

    MO Honglei. Preparation optimization of fixed abrasive pad by thermosetting molding [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [2]
    明舜, 李军, 张羽驰, 等. 磨粒尺寸和基体硬度对固结磨料抛光YAG晶体的影响 [J]. 金刚石与磨料磨具工程,2020,40(3):86-90.

    MING Shun, LI Jun, ZHANG Yuchi, et al. Effect of abrasive size and matrix hardness on fixed abrasive polishing of YAG crystal [J]. Diamond & Abrasives Engineering,2020,40(3):86-90.
    [3]
    凌顺志, 墨洪磊, 汪忠喜, 等. 磨料尺寸对固结金刚石聚集体磨料垫研磨石英玻璃加工性能的影响 [J]. 金刚石与磨料磨具工程,2017,37(5):12-18.

    LING Shunzhi, MO Honglei, WANG Zhongxi, et al. Effect of abrasive sizes on processing characteristics of fixed diamond aggregations pad lapping quartz glass [J]. Diamond & Abrasives Engineering,2017,37(5):12-18.
    [4]
    徐胜. 磨粒改性对固结磨料垫研磨蓝宝石性能的影响 [D]. 南京: 南京航空航天大学, 2016.

    XU Sheng. Effect of abrasive modification on sapphire lapping performance by fixed abrasive pad [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [5]
    朱永伟, 王成, 徐俊, 等. 固结磨料研磨垫孔隙结构对其加工性能的影响 [J]. 光学精密工程,2014,266(4):911-917.

    ZHU Yongwei, WANG Cheng, XU Jun, et al. Influence of pore distribution of fixed abrasive pad on its machining performance [J]. Optics & Precision Engineering,2014,266(4):911-917.
    [6]
    付杰. 固结磨料研磨抛光垫磨粒保持性能研究 [D]. 南京: 南京航空航天大学, 2013.

    FU Jie. Abrasives retaining performance of fixed abrasive pad [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [7]
    霍凤伟, 金洙吉, 康仁科, 等. 细粒度金刚石砂轮表面磨粒识别研究 [J]. 大连理工大学学报,2007,47(3):358-362. doi: 10.3321/j.issn:1000-8608.2007.03.010

    HUO Fengwei, JIN Zhuji, KANG Renke, et al. Recognition of diamond grains on surface of fine diamond grinding wheel [J]. Journal of Dalian University of Technology,2007,47(3):358-362. doi: 10.3321/j.issn:1000-8608.2007.03.010
    [8]
    贾坡, 田建艳, 杨英波, 等. 基于机器视觉的滚抛磨块缺陷检测方法 [J]. 金刚石与磨料磨具工程,2021,41(1):76-82.

    JIA Po, TIAN Jianyan, YANG Yingbo, et al. Defect detection method of abrasive block based on machine vision [J]. Diamond & Abrasives Engineering,2021,41(1):76-82.
    [9]
    赵玉康, 毕文波, 葛培琪. 电镀金刚石线锯表面磨粒分布密度的多相机视觉检测 [J]. 金刚石与磨料磨具工程,2021,41(2):64-68.

    ZHAO Yukang, BI Wenbo, GE Peiqi. Multi-camera visual inspection of abrasives distribution density on electroplated diamond wire saw surface [J]. Diamond & Abrasives Engineering,2021,41(2):64-68.
    [10]
    徐杨. 面向视频监控的动态目标检测、跟踪与识别关键技术研究 [D]. 沈阳: 东北大学, 2012.

    XU Yang. Research on key technologies of dynamic objects detection, tracking and recognition for video surveillance [D]. Shenyang: Northeastern University, 2012.
    [11]
    杨智宏, 贺石中, 冯伟, 等. 基于Mask R-CNN网络的磨损颗粒智能识别与应用 [J]. 摩擦学学报,2021,41(1):105-114.

    YANG Zhihong, HE Shizhong, FENG Wei, et al. Intelligent identification of wear particles based on Mask R-CNN network and application [J]. Tribology,2021,41(1):105-114.
    [12]
    肖潇. 基于深度学习的遥感图像处理系统的设计与实现 [D]. 北京: 北京邮电大学, 2019.

    XIAO Xiao. Design and implementation of remote sensing image processing system based on deep learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
    [13]
    张娟娟, 宋圭辰, 刘斌, 等. 改进的基于Mask R-CNN的碳纤维图像分割方法 [J]. 中国科技论文, 2021, 16(11): 1189-1194, 1208.

    ZHANG Juanjuan, SONG Guichen, LIU Bin, et al. Improved Mask R-CNN image segmentation method for carbon fiber [J]. China Sciencepaper, 2021, 16(11): 1189-1194, 1208.
    [14]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [15]
    付发, 未建英, 张丽娜. 基于卷积网络的遥感图像建筑物提取技术研究 [J]. 软件工程,2018,21(6):4-7.

    FU Fa, WEI Jianying, ZHANG Lina. A study of building extraction remote sensing imagery based on convolution network [J]. Software Engineering,2018,21(6):4-7.
    [16]
    安超, 魏海军, 刘竑, 等. 基于Mask R-CNN的铁谱磨粒智能分割与识别 [J]. 润滑与密封,2020,45(3):112-117.

    AN Chao, WEI Haijun, LIU Hong, et al. Ferrographic wear debris intelligent segmentation and recognition based on Mask R-CNN [J]. Lubrication Engineering,2020,45(3):112-117.
    [17]
    林志洁, 罗壮, 赵磊, 等. 特征金字塔多尺度全卷积目标检测算法 [J]. 浙江大学学报(工学版),2019,53(3):533-540.

    LIN Zhijie, LUO Zhuang, ZHAO Lei, et al. Multi-scale convolution target detection algorithm with feature pyramid [J]. Journal of Zhejiang University(Engineering Science),2019,53(3):533-540.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (117) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return