CN 41-1243/TG ISSN 1006-852X
LIANG Huazhuo, FU Youzhi, HE Junfeng, XU Lanying, YAN Qiusheng. Magnetorheological chemical compound polishing of single crystal SiC substrate[J]. Diamond & Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
Citation: LIANG Huazhuo, FU Youzhi, HE Junfeng, XU Lanying, YAN Qiusheng. Magnetorheological chemical compound polishing of single crystal SiC substrate[J]. Diamond & Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108

Magnetorheological chemical compound polishing of single crystal SiC substrate

doi: 10.13394/j.cnki.jgszz.2021.0108
More Information
  • Received Date: 2021-08-11
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2021-11-01
  • Based on the magnetorheological chemical composite polishing principle of Fenton reaction, the magnetorheological chemical composite polishing experiment was carried out on single crystal SiC substrate, and the influence of process parameters on the polishing effect was studied. The results show that with the increase of diamond particle size, material removal increases first and then decreases, while surface roughness decreases first and then increases. With the increase of abrasive mass fraction, material removal rate increases, and surface roughness decreases first and then increases. When the mass fraction of carbonyl iron powder increases, material removal rate increases, while surface roughness decreases first and then increases. With the increase of oxidant mass fraction, material removal increases first and then decreases, while the surface roughness decreases first and then increases. The influence of machining gap on material removal rate varies greatly. When machining gap is 1.0 mm, machined surface quality is better. With the increase of workpiece speed and polishing disc speed, the material removal rate first increases and then decreases, and the surface roughness first decreases and then increases. The optimized process parameters are as follows: the abrasive particle size is 1.0 μm, the mass fraction is 5%, the mass fraction of carbonyl iron powder is 25%, the mass fraction of hydrogen peroxide is 5%, the machining gap is 1.0 mm, the workpiece speed is 500 r/min, and the polishing disc speed is 20 r/min. The single crystal SiC with surface roughness of about 40.00 nm was processed with optimized process parameters to obtain a smooth surface with surface roughness of less than 0.10 nm.

     

  • [1]
    RAYNAUD C, TOURNIER D, MOREL H, et al. Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices [J]. Diamond and Related Materials,2010,19(1):1-6. doi: 10.1016/j.diamond.2009.09.015
    [2]
    ZHOU L, AUDURIER V, PIROUZ P, et al. Chemomechanical polishing of silicon carbide [J]. Journal of the Electrochemical Society,1997,144(6):161-163. doi: 10.1149/1.1837711
    [3]
    OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices [J]. Japanese Journal of Applied Physics,2006,45(10A):7565-7586. doi: 10.1143/JJAP.45.7565
    [4]
    PUSHPAKARAN B N, SUBBURAJ A S, BAYNE S B, et al. Impact of silicon carbide semiconductor technology in photovoltaic energy system [J]. Renewable and Sustainable Energy Reviews,2016,55:971-989. doi: 10.1016/j.rser.2015.10.161
    [5]
    AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12(9):41-46.
    [6]
    SHI X, PAN G, ZHOU Y, et al. Extended study of the atomic step-terrace structure on hexagonal SiC(0001) by chemical-mechanical planarization [J]. Applied Surface Science,2013,284:195-206. doi: 10.1016/j.apsusc.2013.07.080
    [7]
    叶子凡, 周艳, 徐莉, 等. 紫外LED辅助的4H-SiC化学机械抛光 [J]. 纳米技术与精密工程,2017,15(5):342-346.

    YE Zifan, ZHOU Yan, XU Li, et al. Chemical mechanical polishing of 4H-SiC wafer with UV-LED light [J]. Nanotechnology and Precision Engineering,2017,15(5):342-346.
    [8]
    徐少平. 基于芬顿反应的单晶SiC集群磁流变化学复合抛光研究 [D]. 广州: 广东工业大学, 2016.

    XU Shaoping. Research on chemical cluster magnetorheological compound polishing of single-crystal SiC based on Fenton reaction [D]. Guangzhou: Guangdong University of Technology, 2016.
    [9]
    JAIN V K, RANJAN P, SURI V K, et al. Chemo-mechanical magnetorheological finishing (CMMRF) of silicon for microelectronics applications [J]. CIRP Annals-Manufacturing Technology,2010,59(1):323-328. doi: 10.1016/j.cirp.2010.03.106
    [10]
    RANJAN P, BALASUBRAMANIAM R, SURI V K, et al. Development of chemo-mechanical magnetorheological finishing process for super finishing of copper alloy [J]. International Journal of Manufacturing Technology & Management,2013,27(4-6):130-141.
    [11]
    尹韶辉, 王永强, 李叶鹏, 等. 蓝宝石基片的磁流变化学抛光试验研究 [J]. 机械工程学报,2016,52(5):80-87. doi: 10.3901/JME.2016.05.080

    YIN Shaohui, WANG Yongqiang, LI Yepeng, et al. Experimental study on magnetorheological chemical polishing for sapphire substrate [J]. Journal of Mechanical Engineering,2016,52(5):80-87. doi: 10.3901/JME.2016.05.080
    [12]
    NAM S, RENGANATHAN V, TRATNYEK P G. Substituent effects on azo dye oxidation by the FeIII-EDTA-H2O2 system[J]. Chemosphere, 2001, 45(1): 59-65.
  • Relative Articles

    [1]Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering. doi: 10.13394/j.cnki.jgszz.2024.0070
    [2]CHENG Feng, WANG Zirui, ZHU Rui, WANG Yongguang, PENG Yang, ZHANG Tianyu, ZHAO Dong, FAN Cheng. Study on dispersion of abrasive particles in electro Fenton CMP slurry and design of green polishing fluid in neutral environment[J]. Diamond & Abrasives Engineering, 2025, 45(1): 113-121. doi: 10.13394/j.cnki.jgszz.2023.0242
    [3]QIAN Ning, HE Jingyuan, SU Honghua, SUN Yuting, ANGGEI Lama, DING Wenfeng, XU Jiuhua. Precision hole-machining of SiCf/SiC composite using single-layer brazed diamond core drill dressed by pulsed laser[J]. Diamond & Abrasives Engineering, 2025, 45(2): 143-152. doi: 10.13394/j.cnki.jgszz.2023.0248
    [4]WANG Ben, TANG Jiajie, CHU Hongdi, ZHANG Qi. Effect of grinding wheel type and cooling method on grinding quality of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2025, 45(2): 163-175. doi: 10.13394/j.cnki.jgszz.2024.0008
    [5]GUO Jinzhu, LIU Yao, WANG Youzhe, WANG Dong. Experiment of double grits scribing 2D SiCf/SiC composite[J]. Diamond & Abrasives Engineering, 2025, 45(2): 153-162. doi: 10.13394/j.cnki.jgszz.2024.0044
    [6]XUE Mingpu, XIAO Wen, LI Zongtang, WANG Zhankui, SU Jianxiu. Preliminary investigation of dry tribochemical mechanical polishing of single crystal SiC substrates[J]. Diamond & Abrasives Engineering, 2024, 44(1): 101-108. doi: 10.13394/j.cnki.jgszz.2023.0052
    [7]WANG Youzhe, LIU Yao, ZHOU Yang, LI Jiahao, LI Hansen. Experiment on single diamond abrasive scratching 2D SiCf/SiC composite materials[J]. Diamond & Abrasives Engineering, 2024, 44(3): 335-345. doi: 10.13394/j.cnki.jgszz.2023.0275
    [8]CAI Jianing, FAN Zimin, LE Chen, LI Xin, TANG Mingqiang, ZHAO Fang. Effect of SiC content on properties of copper matrix composites[J]. Diamond & Abrasives Engineering, 2023, 43(6): 743-749. doi: 10.13394/j.cnki.jgszz.2022.0183
    [9]CAI Jianing, LE Chen, FAN Zimin, LI Xin, TANG Mingqiang, ZHAO Fang. Influence of hot-pressed sintering temperature on properties of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(5): 546-552. doi: 10.13394/j.cnki.jgszz.2022.0105
    [10]SUN Baoyu, FU Xingbao, YUAN Xu, GU Yan. Research on ultrasonic vibration grinding technology of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016
    [11]CHEN Guomei, DU Chunkuan, NI Zifeng, BIAN Da, WANG Hao, ZHANG Ping, ZHANG Xin. Effect of complexing agent on chemical-mechanical polishing effect of 316L stainless steel[J]. Diamond & Abrasives Engineering, 2022, 42(6): 753-759. doi: 10.13394/j.cnki.jgszz.2022.0047
    [12]LU Jiabin, CAO Jiyang, DENG Jiayun, YAN Qiusheng, HU Da. Effect of Fe3O4 characteristics on properties of solid-phase Fenton reaction lapping pellets for single-crystal SiC[J]. Diamond & Abrasives Engineering, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008
    [13]ZHANG Haitao, BAO Yan, YANG Feng, SUN Haiqi, DONG Zhigang, KANG Renke. Ultrasonic assisted helical grinding of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2022, 42(1): 81-87. doi: 10.13394/j.cnki.jgszz.2021.0107
    [14]YAN Jiewen, LU Jiabin, HUANG Yinli, PAN Jisheng, YAN Qiusheng. Fenton reaction chemical mechanical polishing liquid composition optimization of polishing GaN wafer[J]. Diamond & Abrasives Engineering, 2022, 42(5): 610-616. doi: 10.13394/j.cnki.jgszz.2022.5001
    [15]ZHOU Wenwen, WANG Jianqing, ZHAO Jing, LIU Yao. Experimental research on single abrasive grain scratch SiCf/SiC ceramic matrix composite[J]. Diamond & Abrasives Engineering, 2021, 41(1): 51-57. doi: 10.13394/j.cnki.jgszz.2021.1.0009
    [16]DENG Jiayun, PAN Jisheng, ZHANG Qixiang, GUO Xiaohui, YAN Qiusheng. Research progress in chemical mechanical polishing of single crystal SiC substrates[J]. Diamond & Abrasives Engineering, 2020, 40(1): 79-91. doi: 10.13394/j.cnki.jgszz.2020.1.0013
    [17]GAO Wei, NI Jinhua, LIU Xingpeng, ZHANG Xu, MA Bojiang. Effect of SiC content on cutting ability of resin diamond wire[J]. Diamond & Abrasives Engineering, 2020, 40(5): 69-73. doi: 10.13394/j.cnki.jgszz.2020.05.0012
    [18]YUAN Dongfang, ZOU Qin, LI Yanguo, WANG Mingzhi. Study on wear resistance of Ti3SiC2 composite materials[J]. Diamond & Abrasives Engineering, 2019, 39(6): 30-38. doi: 10.13394/j.cnki.jgszz.2019.6.0006
    [19]KANG Renke, ZHAO Fan, BAO Yan, ZHU Xianglong, DONG Zhigang. Ultrasonic assisted grinding of SiCf/SiC composites[J]. Diamond & Abrasives Engineering, 2019, 39(4): 85-91. doi: 10.13394/j.cnki.jgszz.2019.4.0015
    [20]Effect of Fe3O4 Characteristics on Properties of Solid-phase Fenton Reaction Lapping Pellets for Single-Crystal SiC[J]. Diamond & Abrasives Engineering. doi: 10.13394/j.cnki.jgszz.2022-0008
  • Cited by

    Periodical cited type(2)

    1. 薛明普,肖文,李宗唐,王占奎,苏建修. 单晶SiC基片干式摩擦化学机械抛光初探. 金刚石与磨料磨具工程. 2024(01): 101-108 . 本站查看
    2. 张博楠,黄辉,武民. 单晶4H-SiC的摩擦诱导化学机械复合加工(FCMM)实验研究. 机械工程学报. 2024(07): 401-410 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 71.1 %META: 71.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.6 %其他: 11.6 %其他: 0.6 %其他: 0.6 %Central District: 0.1 %Central District: 0.1 %China: 1.1 %China: 1.1 %Jaipur: 0.1 %Jaipur: 0.1 %Koesan: 0.2 %Koesan: 0.2 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %Thane: 0.1 %Thane: 0.1 %[]: 0.3 %[]: 0.3 %三门峡: 0.1 %三门峡: 0.1 %上海: 2.1 %上海: 2.1 %上饶: 0.1 %上饶: 0.1 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临沂: 0.2 %临沂: 0.2 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.1 %佛山: 0.1 %俄亥俄: 0.1 %俄亥俄: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 2.0 %北京: 2.0 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.2 %南阳: 0.2 %厦门: 0.1 %厦门: 0.1 %台北: 0.2 %台北: 0.2 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %吕勒奥: 0.1 %吕勒奥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %四平: 0.1 %四平: 0.1 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %安阳: 0.1 %安阳: 0.1 %宣城: 0.4 %宣城: 0.4 %宿迁: 0.1 %宿迁: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 1.6 %张家口: 1.6 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.4 %扬州: 0.4 %新乡: 0.7 %新乡: 0.7 %新竹: 0.1 %新竹: 0.1 %无锡: 0.4 %无锡: 0.4 %昆明: 0.9 %昆明: 0.9 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.3 %杭州: 0.3 %格兰特县: 0.3 %格兰特县: 0.3 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.5 %济南: 0.5 %淄博: 0.1 %淄博: 0.1 %深圳: 4.3 %深圳: 4.3 %温州: 0.2 %温州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %湘西: 13.3 %湘西: 13.3 %湛江: 0.4 %湛江: 0.4 %漯河: 0.7 %漯河: 0.7 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.5 %福州: 0.5 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 22.2 %芒廷维尤: 22.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.7 %苏州: 0.7 %莫斯科: 0.3 %莫斯科: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 16.3 %西宁: 16.3 %西安: 0.5 %西安: 0.5 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 0.9 %运城: 0.9 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 2.8 %郑州: 2.8 %长春: 0.1 %长春: 0.1 %长沙: 3.0 %长沙: 3.0 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.3 %阿什本: 0.3 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他Central DistrictChinaJaipurKoesanKorea Republic ofThane[]三门峡上海上饶东莞中山临沂伊利诺伊州佛山俄亥俄保定兰州凤凰城北京南京南昌南通南阳厦门台北合肥吉林吕勒奥哈尔滨哥伦布四平圣彼得堡天津太原宁波安康安阳宣城宿迁常州常德广州张家口惠州成都扬州新乡新竹无锡昆明朝阳杭州格兰特县武汉沈阳泉州洛杉矶洛阳济南淄博深圳温州湘潭湘西湛江漯河烟台焦作石家庄福州舟山芒廷维尤芝加哥苏州莫斯科衡阳西宁西安诺沃克贵阳费利蒙运城连云港邯郸郑州长春长沙长治阳泉阿什本青岛驻马店龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1052) PDF downloads(80) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return