CN 41-1243/TG ISSN 1006-852X
Volume 42 Issue 2
May  2022
Turn off MathJax
Article Contents
LIU Yibo, KONG Shuaifei, LI Zhengxin, XU Qiang, CHEN Chunhui. Effect of sodium dodecyl benzene sulfonate on vitrified bond and dispersion of diamond[J]. Diamond &Abrasives Engineering, 2022, 42(2): 174-179. doi: 10.13394/j.cnki.jgszz.2021.0111
Citation: LIU Yibo, KONG Shuaifei, LI Zhengxin, XU Qiang, CHEN Chunhui. Effect of sodium dodecyl benzene sulfonate on vitrified bond and dispersion of diamond[J]. Diamond &Abrasives Engineering, 2022, 42(2): 174-179. doi: 10.13394/j.cnki.jgszz.2021.0111

Effect of sodium dodecyl benzene sulfonate on vitrified bond and dispersion of diamond

doi: 10.13394/j.cnki.jgszz.2021.0111
  • Received Date: 2021-10-30
  • Rev Recd Date: 2021-12-04
  • Vitrified bonds and the mixed powders of diamond and vitrified bonds are prepared by sol-gel and corresponding bulk composites are fabricated. The effect of mass fraction of dispersant (sodium dodecyl benzene sulfonate) ranged from 0 to 4.02% on property of vitrified bond is studied, including composition phase of vitrified bond, refractoriness, bending strength and thermal expansion coefficient. The dispersibility of M2.5/5 diamond dispersed in the mixed powders is investigated. The result reveals that when the mass fraction of dispersant was 1.34%, refractoriness of 700 ℃, bending strength of 45 MPa and coefficient of thermal expansion of 4.3×10−6−1 have no change compared with that without addition of dispersant. Besides, with the dispersant increasing from 1.34% to 4.02% the refractoriness of vitrified bond prepared by sol-gel technique decreases to 600 ℃ and bending strength decreases to 28 MPa. The thermal expansion coefficient of vitrified bond increases to 7.5×10−6−1. The research demonstrates that the addition of 1.34% dispersant can realize uniform dispersion of M2.5/5 diamond powder in vitrified bond /diamond composites without causing change in properties of the composites.

     

  • loading
  • [1]
    BRINKSMEIER E, MUTLUGÜN Y, KLOCKE F, et al. Ultra-precision grinding [J]. CIRP Annals-Manufacturing Technology,2010,59(2):652-671. doi: 10.1016/j.cirp.2010.05.001
    [2]
    WANG S, ZHAO Q, GUO B, et al. Ultra-precision raster grinding of monocrystalline silicon biconical free-form optics using arc-shaped diamond grinding wheels [J]. Journal of Manufacturing Processes,2020,58:1064-1074. doi: 10.1016/j.jmapro.2020.09.020
    [3]
    ZHANG C, GUO B, ZHAO Q, et al. Ultra-precision grinding of AlON ceramics: Surface finish and mechanisms [J]. Journal of the European Ceramic Society,2019,39(13):3668-3676. doi: 10.1016/j.jeurceramsoc.2019.05.005
    [4]
    RAO Z, XIAO G, ZHAO B, et al. Effect of wear behaviour of single mono- and poly-crystalline cBN grains on the grinding performance of Inconel 718 [J]. Ceramics International,2021,47:17049-17056. doi: 10.1016/j.ceramint.2021.03.012
    [5]
    DENKENA B, KöHLER J, VENTURA C E H. Influence of grinding parameters on the quality of high content PCBN cutting inserts [J]. Journal of Materials Processing Technology,2014,214(2):276-284. doi: 10.1016/j.jmatprotec.2013.09.013
    [6]
    GUO B, ZHAO Q, FANG X. Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels [J]. Journal of Materials Processing Technology,2014,214(5):1045-1051. doi: 10.1016/j.jmatprotec.2013.12.013
    [7]
    ONWUKA G, ABOU-EL-HOSSEIN K. Surface roughness in ultra-high precision grinding of BK7 [J]. Procedia CIRP,2016,45:143-146. doi: 10.1016/j.procir.2016.03.023
    [8]
    AIDA H, KIM S, IKEJIRI K, et al. Precise mechanical polishing of brittle materials with free diamond abrasives dispersed in micro-nano-bubble water [J]. Precision Engineering,2015,40:81-86. doi: 10.1016/j.precisioneng.2014.10.008
    [9]
    ANDO T, MIKKA N G, ROBIN E R. Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state [J]. Diamond and Related Materials,1996,5(5):1136-1142.
    [10]
    MOCHALIN V, GOGOTSI Y. Nanodiamond-polymer composites [J]. Diamond and Related Materials,2015,58:161-171. doi: 10.1016/j.diamond.2015.07.003
    [11]
    LIN T, LIU S, JI Z, et al. Vitrified bond diamond grinding wheel prepared by gel-casting with 3D printing molds [J]. Diamond and Related Materials,2020,108:107917-107923. doi: 10.1016/j.diamond.2020.107917
    [12]
    ZHANG W, LIU X, CHEN S, et al. Variations in structure and properties of vitrified bonds and vitrified diamond composites prepared by sol-gel and melting methods at different sintering temperature [J]. Ceramics International,2020,46(13):21202-21210. doi: 10.1016/j.ceramint.2020.05.202
    [13]
    赵东鹏. 超精磨陶瓷结合剂纳米金刚石磨具的研制 [D]. 秦皇岛: 燕山大学, 2013.

    ZHAO Dongpeng. Research of vitrified-bonded nanodiamond wheels for ultra-precision grinding [D]. Qinhuangdao: Yanshan University, 2013.
    [14]
    李亚朋. 高分子网络凝胶法陶瓷结合剂微纳米金刚石磨具的制备 [D]. 秦皇岛: 燕山大学, 2016.

    LI Yapeng. Preparation on micro/nanodiamond tools bonded with ceramic abrasive by polymer network sol-gel method [D]. Qinhuangdao: Yanshan University, 2016.
    [15]
    胡伟达. 溶胶凝胶法制备陶瓷结合剂金刚石砂轮的研究 [D]. 长沙: 湖南大学, 2013.

    HU Weida. Study on preparation vitrified bond diamond grinding wheel by sol-gel method [D]. Changsha: Hunan University, 2013.
    [16]
    CHANG S Y, RING T A. Map of gel times for three phase region tetraethoxysilane, ethanol and water [J]. Journal of Non-crystalline Solids, 1992, 147/148: 56–61.
    [17]
    GALLYAMOVA R, DOKICHEV V, SAFIULLIN R, et al. The effect of the concentration of water in the silica sol-gel solution on the formation of an oxide film on the surface of carbon fibers [J]. Materials Today: Proceedings,2021,38:1584-1587. doi: 10.1016/j.matpr.2020.08.156
    [18]
    DOLININA E S, KRAEV A S, PARFENYUK E V. Effect of sol-gel synthesis conditions on the physical properties of silica hydrogels [J]. Mendeleev Communications,2020,30(6):812-814. doi: 10.1016/j.mencom.2020.11.041
    [19]
    朱昌洪. 微细金刚石化学复合镀工艺研究 [D]. 南京: 南京航空航天大学, 2011.

    ZHU Changhong. Study on chemical composite plating technology of fine diamond [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [20]
    JOSHI R, CHHIBBER R. Effect of SiO2/B2O3 ratio on the thermophysical and wetting properties of borosilicate glass sealant for glass-metal joint [J]. Journal of Materials Processing Technology,2018,259:186-194. doi: 10.1016/j.jmatprotec.2018.04.028
    [21]
    CUI L, HAO X, TANG Y, et al. Effect of B2O3 on physical properties of LZAS vitrified bond and mechanical properties of diamond composites [J]. International Journal of Refractory Metals & Hard Materials,2015,52:50-54.
    [22]
    EL-EGILI K. Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses [J]. Physica B,2003,325:340-348. doi: 10.1016/S0921-4526(02)01547-8
    [23]
    谭刚. 硅晶圆CMP抛光速率影响因素分析 [J]. 微纳电子技术,2007,4(Z1):1-2.

    TAN Gang. Analysis of the effect on silicon wafer CMP velocity [J]. Microelectronic Technology,2007,4(Z1):1-2.
    [24]
    LI B, MEI T, CHU H, et al. Ultrasonic-assisted electrodeposition of Ni/diamond composite coatings and its structure and electrochemical properties [J]. Ultrasonics Sonochemistry,2021,73(28):105475.
    [25]
    赵保会. 超高速磨削用CBN砂轮陶瓷结合剂的研究 [D]. 天津: 天津大学, 2012.

    ZHAO Baohui. Research of vitrified bond for ultra-high speed CBN grinding wheel [D]. Tianjin: Tianjin University, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (110) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return