CN 41-1243/TG ISSN 1006-852X
Volume 43 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WANG Yani, ZHANG Shaohe, ZHANG Qian, KONG Xiangwang, HE Tao, ZHAO Dongpeng, GAO Hua. Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools[J]. Diamond & Abrasives Engineering, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082
Citation: WANG Yani, ZHANG Shaohe, ZHANG Qian, KONG Xiangwang, HE Tao, ZHAO Dongpeng, GAO Hua. Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools[J]. Diamond & Abrasives Engineering, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082

Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools

doi: 10.13394/j.cnki.jgszz.2022.0082
More Information
  • Received Date: 2022-06-28
  • Accepted Date: 2022-10-09
  • Rev Recd Date: 2022-11-02
  • The direct ink writing (DIW) technology of slurry is a 3D printing technology based on slurry extrusion. It has the advantages of low energy consumption, low cost, fast printing speed and no structural design restrictions. On the basis of summarizing the advantages of the application of DIW technology to ceramic-based diamond tools, key steps in the application process, such as the raw material selection, the slurry preparation, the printing suitability, the degreasing and the sintering process, are discussed and the powder agglomeration problem that needs to be given attention to in the slurry preparation process is pointed out. At the same time, some research examples of DIW manufacturing process are analyzed. Finally, it points out the key problems that should be solved in DIW manufacturing ceramic-based diamond tools.

     

  • loading
  • [1]
    段端志. 磨料预钎焊金刚石工具的基础研究 [D]. 南京: 南京航空航天大学, 2016.

    DUAN Duanzhi. Basic research on abrasive pre-brazed diamond tools [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [2]
    张云鹤, 黄景銮, 宋运运, 等. 3D打印金刚石工具的研究进展 [J]. 金刚石与磨料磨具工程,2021,41(3):40-47.

    ZHANG Yunhe, HUANG Jingluan, SONG Yunyun, et al. Research progress of 3D printing diamond tools [J]. Diamond & Abrasives Engineering,2021,41(3):40-47.
    [3]
    张绍和. 金刚石与金刚石工具 [M]. 长沙: 中南大学出版社, 2005.

    ZHANG Shaohe. Diamond and diamond tools [M]. Changsha: Central South University Press, 2005.
    [4]
    范波, 徐帅. 金刚石磨料表面多孔结构的制备 [J]. 金刚石与磨料磨具工程,2017,37(6):41-44.

    FAN Bo, XU Shuai. Fabrication of porous structure on diamond abrasive surface [J]. Diamond & Abrasives Engineering,2017,37(6):41-44.
    [5]
    陆静, 王艳辉, 黄景銮. 一种蜂窝状金刚石工具的浆料直写成型方法: CN112692956A [P]. 2021-04-23.

    LU Jing, WANG Yanhui, HUANG Jingluan. A kind of direct ink writing molding method of honeycomb diamond tool: CN112692956A [P]. 2021-04-23.
    [6]
    张津津, 朱梦梦, 李慧, 等. 水固化3D打印方法及装置: CN110154387B [P]. 2020-10-27.

    ZAHNG Jinjin, ZHU Mengmeng, LI Hui, et al. Water curing 3D printing method and device: CN110154387B [P]. 2020-10-27.
    [7]
    CESARANO J, SEGALMAN R, CALVERT P. Robocasting provides moldless fabrication from slurry deposition [J]. Ceramic Industry,1998,148(4):94-96.
    [8]
    张绍和, 苏舟, 刘磊磊, 等. SLS和FDMS制造超薄金刚石锯片对比研究 [J]. 金刚石与磨料磨具工程,2021,41(1):38-43.

    ZHANG Shaohe, SU Zhou, LIU Leilei, et al. Comparative study on ultra-thin diamond sawblades made by SLS and FDMS [J]. Diamond & Abrasives Engineering,2021,41(1):38-43.
    [9]
    KULKARMI A, SORARU G D, PEARCE J M. Polymer-derived SiOC replica of material extrusion-based 3-D printed plastics [J]. Additive Manufacturing,2020,32:100988. doi: 10.1016/j.addma.2019.100988
    [10]
    DEL-MAZO-BARBARA L, GINEBRA M P. Rheological characterisation of ceramic inks for 3D direct ink writing: A review [J]. Journal of the European Ceramic Society,2021,41(16):18-33. doi: 10.1016/j.jeurceramsoc.2021.08.031
    [11]
    赵洪炯, 董明成. 用于直写成型的SiC陶瓷浆料制备研究 [J]. 轻纺工业与技术,2020,49(12):11-12. doi: 10.3969/j.issn.2095-0101.2020.12.005

    ZHAO Hongjiong, DONG Mingcheng. Study on preparation of SiC ceramic slurry for direct ink writing [J]. Textile Industry and Technology,2020,49(12):11-12. doi: 10.3969/j.issn.2095-0101.2020.12.005
    [12]
    SHAHZAD A, LAZOGLU I. Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges [J]. Composites Part B: Engineering,2021,225:109249. doi: 10.1016/j.compositesb.2021.109249
    [13]
    李亚运, 司云晖, 熊信柏, 等. 陶瓷3D打印技术的研究与进展 [J]. 硅酸盐学报,2017,45(6):793-805.

    LI Yayun, SI Yunhui, XIONG Xinbo, et al. Research and progress on three dimensional printing of ceramic materials [J]. Journal of the Chinese Ceramic Society,2017,45(6):793-805.
    [14]
    林克英. 超细金刚石微粉的提纯及分级工艺研究 [D]. 武汉: 中国地质大学, 2006.

    LIN Keying. Research on purification and classification technology of ultrafine diamond powder [D]. Wuhan: China University of Geosciences, 2006.
    [15]
    CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
    [16]
    JACKSON S, DICKENS T. Rheological and structural characterization of 3D-printable polymer electrolyte inks [J]. Polymer Testing,2021,104:107377. doi: 10.1016/j.polymertesting.2021.107377
    [17]
    刘英莉, 朱文超, 邹志云, 等. 超细粉体团聚性表征技术研究 [J]. 中国粉体技术,2020,26(6):45-50.

    LIU Yingli, ZHU Wenchao, ZOU Zhiyun, et al. Research on agglomeration characterization technology of ultrafine powder [J]. China Powder Science and Technology,2020,26(6):45-50.
    [18]
    刘大成. 粉体团聚及解决措施 [J]. 中国陶瓷,2000,36(6):33-35. doi: 10.3969/j.issn.1001-9642.2000.06.014

    LIU Dacheng. Flour agglomerate and solving measures for it [J]. China Ceramics,2000,36(6):33-35. doi: 10.3969/j.issn.1001-9642.2000.06.014
    [19]
    纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展 [J]. 材料工程,2018,46(7):19-28. doi: 10.11868/j.issn.1001-4381.2018.000084

    JI Hongchao, ZHANG Xuejing, PEI Weichi, et al. Research progress in ceramic 3D printing technology and material development [J]. Journal of Materials Engineering,2018,46(7):19-28. doi: 10.11868/j.issn.1001-4381.2018.000084
    [20]
    PINARGOTE N W S, SMIRNOV A, NIKITA P, et al. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: A review [J]. Nanomaterials,2020,10(7):1300. doi: 10.3390/nano10071300
    [21]
    SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials [J]. Advanced Materials,2022:2108855.
    [22]
    RUESCHHOFF L M, TRICE R W, YOUNGBLOOD J P. Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering [J]. Ceramics International,2017,43(14):10791-10798. doi: 10.1016/j.ceramint.2017.05.097
    [23]
    HUANG J, LU J, WANG Y, et al. Fabrication of porous structure vitrified bond diamond grinding wheel via direct ink writing [J]. Ceramics International,2021,47(24):34050-34058. doi: 10.1016/j.ceramint.2021.08.314
    [24]
    XIA Y, LU Z, CAO J, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing [J]. Scripta Materialia,2019,165:84-88. doi: 10.1016/j.scriptamat.2019.02.016
    [25]
    XIA X, DUAN G. Effect of solid loading on properties of zirconia ceramic by direct ink writing [J]. Materials Research Express,2021,8(1):015403. doi: 10.1088/2053-1591/abd866
    [26]
    ROSENTAL T, MAGDASSI S. A new approach to 3D printing dense ceramics by ceramic precursor binders [J]. Advanced Engineering Materials,2019,21(10):1900604. doi: 10.1002/adem.201900604
    [27]
    YU T, ZHANG Z, LIU Q, et al. Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics [J]. Ceramics International,2020,46(4):5020-5027. doi: 10.1016/j.ceramint.2019.10.245
    [28]
    FEILDEN E, BLANCA E G T, GIULIANI F, et al. Robocasting of structural ceramic parts with hydrogel inks [J]. Journal of the European Ceramic Society,2016,36(10):2525-2533. doi: 10.1016/j.jeurceramsoc.2016.03.001
    [29]
    M′BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing [J]. Scientific Reports,2017,7(1):1-10. doi: 10.1038/s41598-016-0028-x
    [30]
    SMAY J E, CESARANO III J, TUTTLE B A, et al. Directed colloidal assembly of linear and annular lead zirconate titanate arrays [J]. Journal of the American Ceramic Society,2004,87(2):293-295. doi: 10.1111/j.1551-2916.2004.00293.x
    [31]
    LI Q, LI B, ZHOU J, et al. Robocasting: A novel avenue for engineering complex 3D structures [J]. Journal of Inorganic Materials,2005,20(1):13-20.
    [32]
    MARCHI C S, KOUZELI M, RAO R, et al. Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scripta Materialia,2003,49(9):861-866. doi: 10.1016/S1359-6462(03)00441-X
    [33]
    STUECKER J N, CESARANO III J, HIRSCHFELD D A. Control of the viscous behavior of highly concentrated mullite suspensions for robocasting [J]. Journal of Materials Processing Technology,2003,142(2):318-325. doi: 10.1016/S0924-0136(03)00586-7
    [34]
    CAI K, ROMAN-MANSO B, SMAY J E, et al. Geometrically complex silicon carbide structures fabricated by robocasting [J]. Journal of the American Ceramic Society,2012,95(8):2660-2666. doi: 10.1111/j.1551-2916.2012.05276.x
    [35]
    HANSON SHEPHERD J N, PARKER S T, SHEPHERD R F, et al. 3D microperiodic hydrogel scaffolds for robust neuronal cultures [J]. Advanced Functional Materials,2011,21(1):47-54. doi: 10.1002/adfm.201001746
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (465) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return