CN 41-1243/TG ISSN 1006-852X
FANG Weisong, YAN Qiusheng, PAN Jisheng, LU Jiabin, CHEN Haiyang. Study on lapping performance of agglomerated diamond abrasive[J]. Diamond & Abrasives Engineering, 2023, 43(6): 684-692. doi: 10.13394/j.cnki.jgszz.2022.0218
Citation: FANG Weisong, YAN Qiusheng, PAN Jisheng, LU Jiabin, CHEN Haiyang. Study on lapping performance of agglomerated diamond abrasive[J]. Diamond & Abrasives Engineering, 2023, 43(6): 684-692. doi: 10.13394/j.cnki.jgszz.2022.0218

Study on lapping performance of agglomerated diamond abrasive

doi: 10.13394/j.cnki.jgszz.2022.0218
More Information
  • Received Date: 2022-12-14
  • Accepted Date: 2023-02-27
  • Rev Recd Date: 2023-01-16
  • [OBJECTIVES] Grinding is one of the ultraprecision machining methods for efficiently thinning and flattening hard and brittle materials such as sapphire. However, traditional grinding processes cannot meet the requirements for high material removal rates and high surface quality simultaneously. Exploring the use of aggregated diamond abrasives and their corresponding processing methods is beneficial for achieving efficient and stable high-quality grinding of hard and brittle materials.

    [METHODS] A novel process was proposed, using ceramic binders and fine diamond abrasives (grain size 3 μm) sintered to form aggregated diamond abrasives (average grain size 30 μm) for grinding purposes. Comparative grinding experiments were conducted on sapphire substrates using the prepared aggregated diamond abrasives and single-crystal diamond abrasives with grain sizes of 3 μm and 30 μm. The grinding performance of the aggregated diamond abrasives was systematically investigated, and a material removal model was established to further reveal the material removal mechanism during processing with these abrasives.

    [RESULTS] (1) Aggregated diamond abrasives exhibited a higher material removal rate. Under the same conditions, grinding with aggregated diamond abrasives for 15 minutes achieved a material removal rate of 1.127 μm/min, an 89.1% increase compared to using 3 μm single-crystal diamond abrasives. (2) Aggregated diamond abrasives demonstrated superior processing stability. Over a 120-minute processing cycle, their material removal rate showed the least reduction, with a rate of 0.483 μm/min after 120 minutes, marking a 57.14% decrease from the rate at 15 minutes. In comparison, the material removal rates of 3 μm and 30 μm single-crystal diamond abrasives decreased by 78.02% and 71.2%, respectively.  (3) Aggregated diamond abrasives resulted in better surface quality. The lowest surface roughness Ra after grinding with aggregated diamond abrasives and 3 μm single-crystal diamond abrasives were 9.45 nm and 8.75 nm, respectively, while using 30 μm single-crystal diamond abrasives yielded a lowest Ra of 246 nm. (4) The wear and removal patterns of aggregated abrasives during processing differed from those of single-crystal diamond abrasives. The latter’s wear was through abrasion dulling, characterized by chipping, flattening, and abrasive wear of the cutting edges. In contrast, the aggregated diamond abrasives underwent micro-fracturing, characterized by the shedding of micro-fine single-crystals from the abrasive surface and the binder network disintegration. Statistical analysis of the particle size distribution of the grinding fluid during the grinding process revealed  that after 30 minutes of grinding, the particle size distribution curve of aggregated diamond abrasives shifted to the left, with a 51.5% decrease in peak volume fraction. The change in the abrasive particle size distribution curve was relatively small. At the same time, a trapezoidal peak composed of abrasion debris and detached micro-fine single-crystal abrasives formed on the left side of the curve. In contrast, a significant leftward shift was observed in the curve for 30 μm single-crystal diamond abrasives, with the peak volume fraction decreasing by 82.8%. The change in the abrasive particle size distribution curve was relatively large, forming a low peak wave on the left side of the curve. Aggregated diamond abrasives employed a multi-edge cutting method, primarily relying on multiple micro-fine single-crystal diamond grains on the surface to remove material from the workpiece. In contrast, single-crystal diamond abrasives engaged in single-edge cutting, mainly relying on the edges and corners of the abrasive for material removal.

    [CONCLUSION] During the grinding process, aggregated diamond abrasives remove material from the workpiece surface through the combined action of multiple micro-fine single-crystal diamond grains on the surface layer. This ensures consistency in cutting depth and enhances surface quality. Under the impact and compression between the workpiece and the grinding disc, the aggregated diamond grains undergo abrasive wear and micro-fracturing, exposing the micro-fine diamond grains encapsulated within the binder and achievi ng cutting edge renewal and self-sharpening. This leads to higher efficiency and more stable processing capability. Therefore, the multi-edge cutting and micro-fracturing characteristics of aggregated diamond abrasives enable the efficient, stable, and high-quality grinding of sapphire substrates.

     

  • [1]
    SEO J, KIM T, LEE H. Effect of free abrasives on material removal in lap grinding of sapphire substrate [J]. Tribology and Lubricants,2018,34(6):209-216.
    [2]
    CHUNG C, KORACH C S, KAO I. Experimental study and modeling of lapping using abrasive grits with mixed sizes [J]. Journal of Manufacturing Science and Engineering,2011,133(3):031006. doi: 10.1115/1.4004137
    [3]
    BHAGAVAT S, LIBERATO J C, CHUNG C, et al. Effects of mixed abrasive grits in slurries on free abrasive machining (FAM) processes [J]. International Journal of Machine Tools and Manufacture,2010,50(9):843-847. doi: 10.1016/j.ijmachtools.2010.04.006
    [4]
    NIU F, WANG K, SUN T, et al. Lapping performance of mixed-size agglomerated diamond abrasives in fixed abrasives pads [J]. Diamond and Related Materials,2021,118:108499. doi: 10.1016/j.diamond.2021.108499
    [5]
    ZHANG L, ZHU L, ZHOU T, et al. Study on the grinding characteristics of sapphire with the assistant of cerium oxide liquid [J]. Materials & Design,2022,215:110451. doi: 10.1016/j.matdes.2022.110451
    [6]
    HU X, SONG Z, PAN Z, et al. Planarization machining of sapphire wafers with boron carbide and colloidal silica as abrasives [J]. Applied Surface Science,2009,255(19):8230-8234. doi: 10.1016/j.apsusc.2009.05.056
    [7]
    XU Y, LU J, XU X. Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing [J]. Applied Surface Science,2016,389:713-720. doi: 10.1016/j.apsusc.2016.07.155
    [8]
    CHEN J, ZHU Y, PENG Y, et al. Silica-assisted fixed agglomerated diamond abrasive polishing [J]. Journal of Manufacturing Processes,2020,59:595-603. doi: 10.1016/j.jmapro.2020.09.013
    [9]
    HUANG S, LI X, ZHAO Y, et al. A novel lapping process for single-crystal sapphire using hybrid nanoparticle suspensions [J]. International Journal of Mechanical Sciences,2021,191:106099. doi: 10.1016/j.ijmecsci.2020.106099
    [10]
    ZHANG B, LEI H, CHEN Y. Preparation of Ag2O modified silica abrasives and their chemical mechanical polishing performances on sapphire [J]. Friction,2017,5(4):429-436. doi: 10.1007/s40544-017-0156-8
    [11]
    CHEN J, SUN T, SU J, et al. A novel agglomerated diamond abrasive with excellent micro-cutting and self-sharpening capabilities in fixed abrasive lapping processes [J]. Wear,2021,464-465:203531. doi: 10.1016/j.wear.2020.203531
    [12]
    邹芹, 向刚强, 王瑶, 等. 聚晶金刚石的研究进展与展望 [J]. 金刚石与磨料磨具工程,2021,41(3):23-32. doi: 10.13394/j.cnki.jgszz.2021.3.0004

    ZOU Qin, XIANG Gangqiang, WANG Yao, et al. Research progress and prospect of polycrystalline diamond [J]. Diamond & Abrasives Engineering,2021,41(3):23-32. doi: 10.13394/j.cnki.jgszz.2021.3.0004
    [13]
    朱永伟, 沈琦, 王子琨, 等. 多晶金刚石固结磨料研磨垫精研石英玻璃的性能探索 [J]. 红外与激光工程,2016,45(10):26-31. doi: 10.3788/IRLA201645.1003003

    ZHU Yongwei, SHEN Qi, WANG Zikun, et al. Lapping performance on quartz glass of fixed abrasive pad embedded with multi-grain diamond grits [J]. Infrared and Laser Engineering,2016,45(10):26-31. doi: 10.3788/IRLA201645.1003003
    [14]
    WANG Z, NIU F, ZHU Y, et al. Comparison of lapping performance between fixed agglomerated diamond pad and fixed single crystal diamond pad [J]. Wear,2019,432/433:202963. doi: 10.1016/j.wear.2019.202963
    [15]
    SHI H, RING T A. CMP pad wear and polish-rate decay modeled by asperity population balance with fluid effect [J]. Microelectronic Engineering,2010,87(11):2368-2375. doi: 10.1016/j.mee.2010.04.010
    [16]
    ANDERSON D, WARKENTIN A, BAUER R. Comparison of spherical and truncated cone geometries for single abrasive-grain cutting [J]. Journal of Materials Processing Technology,2012,212(9):1946-1953. doi: 10.1016/j.jmatprotec.2012.04.021
    [17]
    BOZKAYA D, MÜFTÜ S. A material removal model for CMP based on the contact mechanics of pad, abrasives, and wafer [J]. Journal of the Electrochemical Society,2009,156(12):H890. doi: 10.1149/1.3231691
    [18]
    CHEN J, ZHU Y, WANG J, et al. Relationship between mechanical properties and processing performance of agglomerated diamond abrasive compared with single diamond abrasive [J]. Diamond and Related Materials,2019,100:107595. doi: 10.1016/j.diamond.2019.107595
    [19]
    MATSUO T, TOYOURA S, OSHIMA E, et al. Effect of grain shape on cutting force in superabrasive single-grit tests [J]. CIRP Annals - Manufacturing Technology,1989,38(1):323-326. doi: 10.1016/S0007-8506(07)62714-0
  • Relative Articles

    [1]YANG Yufei, LI Xiang, HE Yan, LIU Ming, XU Zicheng, GAO Xingjun. Simulation and experimental study on micro-cutting silicon carbide crystal with single grain diamond[J]. Diamond & Abrasives Engineering, 2024, 44(4): 495-507. doi: 10.13394/j.cnki.jgszz.2023.0158
    [2]ZHANG Suhui, WANG Chuanliu, LI Geng. Influence of diamond layer chamfer parameters on performance of PDC cutters[J]. Diamond & Abrasives Engineering, 2024, 44(4): 470-475. doi: 10.13394/j.cnki.jgszz.2023.0209
    [3]CHEN Jiahu, GE Peiqi. Simulation study of cutting fluid flow field in kerf of fine diameter diamond wire saw[J]. Diamond & Abrasives Engineering, 2024, 44(6): 781-788. doi: 10.13394/j.cnki.jgszz.2023.0235
    [4]SHAO Weiping, ZHANG Tao, LI Jiacheng, MO Xiaoqing. Research on cutting burrs in high speed milling of aluminum alloy plane with diamond coated tools[J]. Diamond & Abrasives Engineering, 2024, 44(2): 221-227. doi: 10.13394/j.cnki.jgszz.2023.0130
    [5]QIU Xiaolong, SUN Xingwei, LIU Yin, YANG Heran, DONG Zhixu, ZHANG Weifeng. Simulation experimental on material removal mechanism of ITO conductive glass by single abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(3): 354-362. doi: 10.13394/j.cnki.jgszz.2023.0183
    [6]SUN Siguang, LI Xiang. Subsurface damage of single crystal nickel by micro-nanometric cutting with diamond tool[J]. Diamond & Abrasives Engineering, 2023, 43(3): 313-321. doi: 10.13394/j.cnki.jgszz.2022.0149
    [7]GAO Mengyang, CHEN Genyu, LI Wei, ZHOU Wei, LI Jie. Optimization of laser sharpening parameters for diamond grinding wheel based on CNN[J]. Diamond & Abrasives Engineering, 2022, 42(5): 602-609. doi: 10.13394/j.cnki.jgszz.2022.0018
    [8]WANG Sen, DONG Hai, GU Yu, WANG Ming, WANG Jiawei. Research on grinding quality and removal mechanism of polycrystalline diamond tools[J]. Diamond & Abrasives Engineering, 2022, 42(4): 467-472. doi: 10.13394/j.cnki.jgszz.2021.3002
    [9]SHI Yan. Analysis on wear characteristics of diamond tools based on cutting technology[J]. Diamond & Abrasives Engineering, 2022, 42(1): 112-118. doi: 10.13394/j.cnki.jgszz.2021.0093
    [10]CHEN Shoufeng, WANG Chengyong, ZHENG Lijuan, ZHOU Yuhai, YU Xinwei, LI Wenhong. Cutting performance of diamond coated tools for machining graphite[J]. Diamond & Abrasives Engineering, 2021, 41(5): 70-76. doi: 10.13394/j.cnki.jgszz.2021.5.0012
    [11]KANG Xijun, TAMAKI Junichi, AKIHIKO Kubo, QIU Yirui, HUANG Peng. ECD truing/dressing and cutting edge truncation of diamond grinding wheel and its processing of hard and brittle materials[J]. Diamond & Abrasives Engineering, 2021, 41(3): 12-18. doi: 10.13394/j.cnki.jgszz.2021.3.0002
    [12]CUI Jinmeng, MENG Dezhong, WU Zhe, YUE Wen, WANG Chengbiao. Review on cutting performance and wear mechanism of PCBN tools[J]. Diamond & Abrasives Engineering, 2020, 40(6): 83-91. doi: 10.13394/j.cnki.jgszz.2020.6.0014
    [13]PANG Jiwei, GAO Yufei, LI Sheng. Surface characteristics and wire wear of electroplated diamond wire saw slicing photovoltaic polycrystalline silicon[J]. Diamond & Abrasives Engineering, 2019, 39(5): 92-96. doi: 10.13394/j.cnki.jgszz.2019.5.0016
    [14]XIAO Xiaodong, SU Guosheng, FENG Limin, YI Mingdong. Analysis on cooling and lubrication mechanism of high-pressure cutting fluid for vermicular cast iron cutting based on AdvantEdge[J]. Diamond & Abrasives Engineering, 2019, 39(2): 76-82. doi: 10.13394/j.cnki.jgszz.2019.2.0015
    [15]CHEN Qiang, YANG Xuefeng, HUA Bobo, ZHANG Zheng, WANG Heng. Experimental study on sintering of diamond particles with multiple cutting edges[J]. Diamond & Abrasives Engineering, 2019, 39(6): 39-42. doi: 10.13394/j.cnki.jgszz.2019.6.0007
    [16]SHEN Gongming, GU Qunfei, WANG Kerong, TANG Chao, NIU Fengli, ZHU Yongwei. Study on high efficient lapping of calcium fluoride crystal with fixed abrasive pad[J]. Diamond & Abrasives Engineering, 2019, 39(5): 67-72. doi: 10.13394/j.cnki.jgszz.2019.5.0012
    [17]HE Genghuang, LI Lingxiang, ZOU Lingli, CHENG Cheng, LIU Xianli. Influencing characteristic of submicroscopic chamfering cutting edge on the cutting property of cemented carbide insert[J]. Diamond & Abrasives Engineering, 2017, 37(3): 46-54. doi: 10.13394/j.cnki.jgszz.2017.3.0010
    [18]LING Shunzhi, MO Honglei, WANG Zhongxi, ZHU Yongwei. Effect of abrasive sizes on processing characteristics of fixed diamond aggregations pad lapping quartz glass[J]. Diamond & Abrasives Engineering, 2017, 37(5): 12-18. doi: 10.13394/j.cnki.jgszz.2017.5.0002
    [19]WANG Zikun, LING Shunzhi, HUANG Daowan, CHEN Jiapeng, LI Jun, ZHU Yongwei. Efficient lapping zirconia ceramic back with fixed diamond aggregation pad[J]. Diamond & Abrasives Engineering, 2017, 37(6): 12-18. doi: 10.13394/j.cnki.jgszz.2017.6.0002
    [20]DENG Fuming, DENG Wenli, YANG Xuefeng, ZHANG Pan, LIU Ruiping, MA Xiangdong. Wear mechanism of the PCBN cutting tools in high speed cutting of hardened bearing steel[J]. Diamond & Abrasives Engineering, 2016, 36(5): 50-54. doi: 10.13394/j.cnki.jgszz.2016.5.0010
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.2 %FULLTEXT: 33.2 %META: 60.4 %META: 60.4 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.9 %其他: 10.9 %其他: 2.3 %其他: 2.3 %Jaipur: 0.1 %Jaipur: 0.1 %Koesan: 0.1 %Koesan: 0.1 %Taoyuan District: 0.1 %Taoyuan District: 0.1 %Thane: 0.1 %Thane: 0.1 %上海: 2.8 %上海: 2.8 %东京: 1.0 %东京: 1.0 %东莞: 0.6 %东莞: 0.6 %中山: 0.2 %中山: 0.2 %佛山: 0.1 %佛山: 0.1 %信阳: 0.5 %信阳: 0.5 %北京: 2.7 %北京: 2.7 %十堰: 0.1 %十堰: 0.1 %华盛顿州: 0.3 %华盛顿州: 0.3 %南京: 0.4 %南京: 0.4 %南通: 0.3 %南通: 0.3 %厦门: 0.3 %厦门: 0.3 %台州: 0.1 %台州: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安顺: 0.1 %安顺: 0.1 %宜春: 0.1 %宜春: 0.1 %密蘇里城: 0.3 %密蘇里城: 0.3 %密西沙加: 0.1 %密西沙加: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广州: 1.1 %广州: 1.1 %张家口: 1.7 %张家口: 1.7 %德罕: 0.1 %德罕: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 0.3 %成都: 0.3 %扬州: 0.2 %扬州: 0.2 %新乡: 1.6 %新乡: 1.6 %昆明: 0.7 %昆明: 0.7 %景德镇: 0.1 %景德镇: 0.1 %曼彻斯特: 0.3 %曼彻斯特: 0.3 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.4 %泉州: 0.4 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.5 %济南: 0.5 %深圳: 0.3 %深圳: 0.3 %湘西: 10.9 %湘西: 10.9 %湛江: 0.3 %湛江: 0.3 %漯河: 0.2 %漯河: 0.2 %濮阳: 0.1 %濮阳: 0.1 %焦作: 0.1 %焦作: 0.1 %特拉瓦克: 0.3 %特拉瓦克: 0.3 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %纽约: 0.2 %纽约: 0.2 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 18.7 %芒廷维尤: 18.7 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.5 %苏州: 0.5 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.3 %莫斯科: 0.3 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 20.0 %西宁: 20.0 %西安: 0.1 %西安: 0.1 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.4 %许昌: 0.4 %诺沃克: 4.2 %诺沃克: 4.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.6 %运城: 0.6 %遵义: 0.1 %遵义: 0.1 %郑州: 3.0 %郑州: 3.0 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 3.6 %长沙: 3.6 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.2 %阿什本: 0.2 %随州: 0.2 %随州: 0.2 %青岛: 0.3 %青岛: 0.3 %首尔特别: 0.1 %首尔特别: 0.1 %其他其他JaipurKoesanTaoyuan DistrictThane上海东京东莞中山佛山信阳北京十堰华盛顿州南京南通厦门台州哈尔滨哥伦布唐山嘉兴大连天津太原宁波安顺宜春密蘇里城密西沙加常州常德广州张家口德罕惠州成都扬州新乡昆明景德镇曼彻斯特武汉沈阳泉州洛阳济南深圳湘西湛江漯河濮阳焦作特拉瓦克石家庄福州纽约舟山芒廷维尤芝加哥苏州荆州莫斯科衡水衡阳衢州西宁西安西雅图许昌诺沃克贵阳运城遵义郑州鄂州重庆长春长沙阳泉阿什本随州青岛首尔特别

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (694) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return