CN 41-1243/TG ISSN 1006-852X
LUAN Yuhan, LI Tianwei, WANG Xuping, HAO Jianxin, ZHAO Hongyang, FU Qiuming, TAO Hong, GAO Deng, MA Zhibin. Diamond grown on KTN substrate and its photocatalytic performance[J]. Diamond & Abrasives Engineering, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007
Citation: LUAN Yuhan, LI Tianwei, WANG Xuping, HAO Jianxin, ZHAO Hongyang, FU Qiuming, TAO Hong, GAO Deng, MA Zhibin. Diamond grown on KTN substrate and its photocatalytic performance[J]. Diamond & Abrasives Engineering, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007

Diamond grown on KTN substrate and its photocatalytic performance

doi: 10.13394/j.cnki.jgszz.2023.0007
More Information
  • Received Date: 2023-01-12
  • Accepted Date: 2023-04-11
  • Rev Recd Date: 2023-04-09
  • Available Online: 2023-11-06
  • [Objectives] Diamond, with advantages of high melting point, good insulation, stable chemical properties, and high thermal conductivity, is a promising semiconductor material for high-power devices, sensors, and quantum computing. The best method for producing high-quality single crystal diamonds through microwave plasma chemical vapor deposition (MPCVD) is homoepitaxial growth, which requires expensive single crystal diamond substrates. Therefore, heteroepitaxial growth on foreign substrates is a compromise approach that has to be adopted, where the selection of a proper substrate becomes a major challenge for growing high-quality diamonds. To enhance the quality of heteroepitaxial growth, potassium tantalum niobate (KTa1-xNbxO3, referred to as KTN) crystals are proposed as the substrate. Their lattice parameter (0.3994 nm) is close to that of diamond (0.3567 nm). The structural similarity between them makes it possible to achieve an ideal result with small lattice mismatch and high crystal quality.

    [Methods] Diamond thin films were grown on large-size, high-quality KTN single crystals using MPCVD. The effect of different growth times on diamond quality was explored by varying the duration of diamond growth. The surface morphologies, microstructures, and crystalline quality were analyzed using scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Diamond samples with different growth times were used to degrade Rhodamine B (RhB) to assess their photocatalytic effect. The absorbance of RhB was measured to evaluate the degradation efficiency of diamond films as catalysts for the pollutant solution.

    [Results ] Analysis of plasma diagnostic spectra confirmed the presence of H groups and carbon source groups, while CN groups were absent. The H group exhibited the highest spectral line intensity, higher than that of the C2 group. This indicated that the system was well-sealed and provided sufficient reactive groups for diamond growth. The ratio of peak intensities between Hα and Hβ was high, while the ratio between C2 and Hα was low, both of which were favorable for the deposition of high-quality diamonds. Raman spectroscopy revealed structural changes in diamonds through comparing Isp3/Isp2, the relative intensities of diamond-phase characteristic peaks and non-diamond-phase characteristic peaks. The ratio gradually increased with the extension of growth time, indicating that the quality of diamonds was improving. XRD analysis of diamond films showed characteristic diamond peaks. In the 6h sample, characteristic peaks appeared at 34.8° (111), 40.5° (200), 58.6° (220) and 70.0° (311), consistent with the standard card (JCPDS No. 35-0801) as the characteristic peaks of TaC, indicating the presence of TaC in the 6h sample. However, the TaC characteristic peaks were lower in the 9h sample, and only diamond characteristic peaks were observed in the 12h sample. This indicated that TaC was only a transitional layer formed in the pre-nucleation stage, and TaC was no longer generated with the extension of growth time. From the SEM images of diamond films at different deposition time, it could be seen that the grain size of the 12h sample was much larger and more evenly distributed than those of other samples. The surface of the 12h sample was mostly composed of (100) faceted grains with a high degree of flatness, and the grains growing at the grain boundaries tended to grow significantly larger. Analysis of photocatalytic activity showed that higher diamond purity and lower non-diamond phase proportion led to better photocatalytic activity, more stable photocatalytic performance, and higher reusability.

    [Conclusions] A new diamond substrate, potassium tantalum niobate (KTa1-xNbxO3), was successfully used to grow high-quality diamond films using MPCVD technology. The samples were characterized by XRD, SEM and Raman spectroscopy. Results indicate the formation of a TaC transition layer when growing diamond films on the KTN substrate, which is favorable for stable diamond growth. Moreover, with increasing growth time, the diamond grain size increases, the diamond phase content increases, and the sample quality improves. Photocatalytic results show that the sample grown for 12 hours has stronger photocatalytic ability and higher photocatalytic stability, achieving a degradation efficiency of 91.9% for RhB, which is 1.6 times higher than that of the 3h sample. These findings broaden the application of diamond and provide valuable insights for substrate selection in diamond fabrication.

     

  • [1]
    LIAO M. Progress in semiconductor diamond photod-etectors and MEMS sensors [J]. Functional Diamond,2022,1(1):29-46. doi: 10.1080/26941112.2021.1877019
    [2]
    LIU J, ZHENG Y, LIN L, et al. Surface conductivity enhancement of H-terminated diamond based on the purified epitaxial diamond layer [J]. Journal of Materials Science,2018,53(18):13030-13041. doi: 10.1007/s10853-018-2579-7
    [3]
    YANG B, ZHANG R, SHEN Q, et al. Study on the lateral growth of the diamond in the substrate holder and the effect of temperature gradient on the large-area diamond surface morphology [J]. Journal of Materials Science,2020,55(36):17072-17080. doi: 10.1007/s10853-020-05256-4
    [4]
    BONNAURON M, SAADA S, MER C, et al. Transparent diamond‐on‐glass micro‐electrode arrays for ex‐vivo neuronal study [J]. Physica Status Solidi (A),2008,205(9):2126-2129. doi: 10.1002/pssa.200879733
    [5]
    LI T, HAO J, CAO W, et al. Designing of room temperature diluted ferromagnetic Fe doped diamond semiconductor [J]. Functional Diamond,2022,2(1):80-83. doi: 10.1080/26941112.2022.2098065
    [6]
    CAO W, GAO D, ZHAO H, et al. Epitaxial lateral growth of single-crystal diamond under high pressure by a plate-to-plate MPCVD [J]. Functional Diamond,2022,1(1):143-149. doi: 10.1080/26941112.2021.1947750
    [7]
    SHU G, DAI B, BOLSHAKOV A, et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond [J]. Functional Diamond,2022,1(1):47-62. doi: 10.1080/26941112.2020.1869511
    [8]
    CHEN J, WANG G, QI C, et al. Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition [J]. Journal of Crystal Growth,2018,484:1-6. doi: 10.1016/j.jcrysgro.2017.12.022
    [9]
    NAD S, GU Y, ASMUSSEN J. Growth strategies for large and high quality single crystal diamond substrates [J]. Diamond and Related Materials,2015,60:26-34. doi: 10.1016/j.diamond.2015.09.018
    [10]
    LLORET F, GUTIERREZ M, ARAUJO D, et al. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density [J]. Physica Status Solidi (A),2017,214(11):1700242. doi: 10.1002/pssa.201700242
    [11]
    李思佳, 冯曙光, 郭胜惠, 等. MPCVD法制备金刚石膜的工艺 [J]. 金刚石与磨料磨具工程,2021,41(6):31-37. doi: 10.13394/j.cnki.jgszz.2021.6.0006

    LI Sijia, FENG Shuguang, GUO Shenghui, et al. Pre-paration technology of diamond film by MPCVD method [J]. Diamond & Abrasives Engineering,2021,41(6):31-37. doi: 10.13394/j.cnki.jgszz.2021.6.0006
    [12]
    丁康俊, 马志斌, 宋修曦, 等. 温度对MPCVD法同质外延单晶金刚石缺陷的影响 [J]. 金刚石与磨料磨具工程,2018,38(2):8-11,19. doi: 10.13394/j.cnki.jgszz.2018.2.0002

    DING Kangjun, MA Zhibin, SONG Xiuxi, at al. Effect of temperature on defects in homoepitaxial single crystal diamond by MPCVD [J]. Diamond & Abrasives Engineering,2018,38(2):8-11,19. doi: 10.13394/j.cnki.jgszz.2018.2.0002
    [13]
    MENG Y, YAN C, KRASNICKI S, et al. High optical quality multicarat single crystal diamond produced by chemical vapor deposition [J]. Physica Status Solidi (A),2012,209(1):101-104. doi: 10.1002/pssa.201127417
    [14]
    JIANG X, KLAGES C, ROSLER M, et al. Deposition and characterization of diamond epitaxial thin films on silicon substrates [J]. Applied Physics A,1993,57(6):483-489. doi: 10.1007/BF00331746
    [15]
    FAN Q, PEREIRA E, GRACIO J. Diamond deposition on copper: studies on nucleation, growth, and adhesion behaviours [J]. Journal of Materials Science,1999,34(6):1353-1365. doi: 10.1023/A:1004566502572
    [16]
    FU Y, YAN B, LOH N, et al. Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition [J]. Journal of Materials Science,1999,34(10):2269-2283. doi: 10.1023/A:1004569406535
    [17]
    SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Scientific Reports,2017,7(1):1-8. doi: 10.1038/s41598-016-0028-x
    [18]
    BENSALAH H, STENGER I, SAKR G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium [J]. Diamond and Related Materials,2016,66:188-195. doi: 10.1016/j.diamond.2016.04.006
    [19]
    WANG Q, WU G, NEWHOURSE-ILLIGE T, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers [J]. Diamond and Related Materials,2020,110:108117. doi: 10.1016/j.diamond.2020.108117
    [20]
    赵中琴, 唐伟忠, 苗晋琦, 等. 含金刚石的复相过渡层及Al2O3衬底上金刚石薄膜的附着力 [J]. 金刚石与磨料磨具工程,2004(1):37-40. doi: 10.3969/j.issn.1006-852X.2004.01.010

    ZHAO Zhongqin, TANG Weizhong, MIAO Jinqi, et al. Deposition of a new kind of composite interlayer containing diamond phase and its application in enhancing adhesion of diamond coatings on alumina substrates [J]. Diamond & Abrasives Engineering,2004(1):37-40. doi: 10.3969/j.issn.1006-852X.2004.01.010
    [21]
    GUAN Q, HU X, WEI J, et al. Growth, etching, polarization and second harmonic generation of potassium lithium tantalate niobate crystals [J]. Journal of Crystal Growth,1999,197(4):1012-1014. doi: 10.1016/S0022-0248(98)00889-6
    [22]
    WANG X, LIU B, YANG Y, et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1− xNbxO3 crystal [J]. Applied Physics Letters,2014,105(5):051910. doi: 10.1063/1.4892663
    [23]
    TRIEBWASSER S. Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3 [J]. Physical Review,1959,114(1):63. doi: 10.1103/PhysRev.114.63
    [24]
    SUZUKI K, SAKAMOTO W, YOGO T, et al. Processing of oriented K (Ta, Nb) O3 films using chemical solution deposition [J]. Journal of the American Ceramic Society,1999,82(6):1463-1466. doi: 10.1111/j.1151-2916.1999.tb01942.x
    [25]
    WANG X, WANG J, YU Y, et al. Growth of cubic KTa1− xNbxO3 crystal by Czochralski method [J]. Journal of Crystal Growth,2006,293(2):398-403. doi: 10.1016/j.jcrysgro.2006.05.021
    [26]
    KNIGHT D S, WHITE W. Characterization of diamond films by Raman spectroscopy [J]. Journal of Materials Research,1989,4(2):385-393. doi: 10.1557/JMR.1989.0385
    [27]
    ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science,2002,297(5587):1670-1672. doi: 10.1126/science.1074374
    [28]
    SU L, CAO Y, HAO H, et al. Emerging applications of nanodiamonds in photocatalysis [J]. Functional Diamond,2022,1(1):93-109. doi: 10.1080/26941112.2020.1869431
    [29]
    BAGHERI S, JULKAPLI N. Nano-diamond based p-hotocatalysis for solar hydrogen production [J]. International Journal of Hydrogen Energy,2020,45(56):31538-31554. doi: 10.1016/j.ijhydene.2020.08.193
    [30]
    DUAN X, AO Z, LI D, et al. Surface-tailored nano-diamonds as excellent metal-free catalysts for organic oxidation [J]. Carbon,2016,103:404-411. doi: 10.1016/j.carbon.2016.03.034
    [31]
    NAVALON S, DHAKSHINAMOORTHY A, ALVARO M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chemistry of Materials,2020,32(10):4116-4143. doi: 10.1021/acs.chemmater.0c00204
  • Relative Articles

    [1]XIAO Yuxi, LI Xinyu, ZHANG Yongjie, DENG Hui. Highly efficient polishing of polycrystalline CVD diamond via atmosphere inductively coupled plasma[J]. Diamond & Abrasives Engineering, 2024, 44(5): 553-562. doi: 10.13394/j.cnki.jgszz.2023.0281
    [2]ZHANG Chuan, LIU Dongdong, LU Ming, SUN Fanghong. Experimental study on synthesis of single crystal diamond by hot filament chemical vapor deposition method[J]. Diamond & Abrasives Engineering, 2024, 44(3): 279-285. doi: 10.13394/j.cnki.jgszz.2023.0101
    [3]NIU Hao, JIN Zhuji, SHEN Yu, YANG Huipeng. Preparation of Ni-W alloy disc for dynamic friction polishing of diamond[J]. Diamond & Abrasives Engineering, 2024, 44(1): 39-49. doi: 10.13394/j.cnki.jgszz.2023.0042
    [4]SUN Changhong, LIANG Baoyan, ZHANG Wangxi. Thermal explosion reaction synthetic coating on diamond surface[J]. Diamond & Abrasives Engineering, 2022, 42(1): 47-55. doi: 10.13394/j.cnki.jgszz.2021.0098
    [5]CHEN Liangxian, SHAO Siwu, LIU Peng, AN Kang, ZHENG Yuting, HUANG Yabo, BAI Mingjie, ZHANG Jianjun, LIU Jinlong, WEI Junjun, LI Chengming. Design and function of cold trap in the process of preparing diamond films by DC arc plasma jet chemical vapor deposition[J]. Diamond & Abrasives Engineering, 2022, 42(2): 150-155. doi: 10.13394/j.cnki.jgszz.2021.0113
    [6]HE Zhongwen, MA Zhibin. Preparation of polycrystalline diamond films by MPCVD at high plasma power density[J]. Diamond & Abrasives Engineering, 2022, 42(2): 156-161. doi: 10.13394/J.cnki.jgszz.2021.0121
    [7]ZHU Haifeng, WANG Yankun, DING Wenming, LIANG Linda. Preparation of diamond films by low power MPCVD[J]. Diamond & Abrasives Engineering, 2021, 41(2): 39-45. doi: 10.13394/j.cnki.jgszz.2021.2.0007
    [8]DAI Zhen, ZHANG Wangxi, LIANG Baoyan, YANG Li. Preparation of titanium-aluminum-carbon bond diamond composite material by microwave-induced thermal explosion[J]. Diamond & Abrasives Engineering, 2021, 41(2): 4-8. doi: 10.13394/j.cnki.jgszz.2021.2.0001
    [9]LI Songbo, YU Yanglei, JIAO Zengkai, KANG Huiyuan, KANG Aolong, WEI Qiuping, ZHOU Kechao, YU Zhiming, MA Li. Effect of pore density on thermal conductivity of CVD diamond foam[J]. Diamond & Abrasives Engineering, 2021, 41(6): 24-30. doi: 10.13394/j.cnki.jgszz.2021.6.0005
    [10]HENG Fan, LIAO Xuehong, CAO Wei, FU Qiuming, XU Chuanbo, ZHAO Hongyang, MA Zhibin. Carbon nanowalls modifying single crystal diamond surface by ECR microwave plasma[J]. Diamond & Abrasives Engineering, 2020, 40(1): 34-38. doi: 10.13394/j.cnki.jgszz.2020.1.0005
    [11]ZHANG Lingjie, ZHANG Wangxi, LIANG Baoyan. Fabrication TiC/Ti3SiC2-diamond composites by spark plasma sintering using different binder[J]. Diamond & Abrasives Engineering, 2020, 40(1): 46-49. doi: 10.13394/j.cnki.jgszz.2020.1.0007
    [12]ZHANG Cunsheng, SHAO Zengming, SU Yanbin. Preparation and properties of octahedral diamond single crystal[J]. Diamond & Abrasives Engineering, 2020, 40(6): 4-8. doi: 10.13394/j.cnki.jgszz.2020.6.0001
    [13]YE Jichao, SHEN Lina, YANG Gansheng, SUN Jiwei. Experimental study on the whole process of diamond indenting rock[J]. Diamond & Abrasives Engineering, 2018, 38(5): 17-20,27. doi: 10.13394/j.cnki.jgszz.2018.5.0004
    [14]ZOU Lingli. Microstructure and mechanical property of CVD MT-Ti(C, N) coating with different C/N ratios[J]. Diamond & Abrasives Engineering, 2018, 38(4): 56-60. doi: 10.13394/j.cnki.jgszz.2018.4.0011
    [15]XU Shuai, LI Xiaopu, DING Yulong, WU Xiao, FAN Bo, YAN Ning. Chemical vapor deposition of diamond microsphere: Investigation of growth dynamics[J]. Diamond & Abrasives Engineering, 2018, 38(5): 1-5. doi: 10.13394/j.cnki.jgszz.2018.5.0001
    [16]ZHAO Xinyang, LI Zhiqiang, MA Yuxiang, ZHANG Kehao, HUANG Jinzhou, YUAN Xinjie, XU Yang, WANG Hailong, XI Yaohui, XU Shuai, ZHAO Yanjun, YAN Ning, WANG Zhiqiang. Application of TiO2/BDD composite electrode in electrochemical oxidation treatment of pharmaceutical wastewater[J]. Diamond & Abrasives Engineering, 2018, 38(5): 12-16. doi: 10.13394/j.cnki.jgszz.2018.5.0003
    [17]GAO Long, LIU Jituo, YAN Zepeng, ZHANG Yingjiu. Diamond particle content of Cu-diamond composite coating[J]. Diamond & Abrasives Engineering, 2017, 37(4): 44-47. doi: 10.13394/j.cnki.jgszz.2017.4.0009
    [18]ZHANG Yan, ZANG Jianbing, TIAN Pengfei, XU Hanqing, HAN Chan, WANG Yanhui. Microwave method coated nanodiamond and its application progress in catalytic area[J]. Diamond & Abrasives Engineering, 2016, 36(5): 8-14. doi: 10.13394/j.cnki.jgszz.2016.5.0002
    [19]LIANG Baoyan, ZHANG Wangxi, WANG Yanzhi, XU Shishuai, WANG Junhe, YAN Shuaishuai, MU Yunchao. MAX phase-diamond composites fabricated by microwave sintering[J]. Diamond & Abrasives Engineering, 2016, 36(1): 25-30. doi: 10.13394/j.cnki.jgszz.2016.1.0006
    [20]YUAN Zewei, DU Haiyang, HE Yan, ZHANG Yue. Preparation of slurry for photocatalytic assisted chemical mechanical polishing CVD diamond[J]. Diamond & Abrasives Engineering, 2016, 36(5): 15-20,31. doi: 10.13394/j.cnki.jgszz.2016.5.0003
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.3 %FULLTEXT: 31.3 %META: 63.6 %META: 63.6 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.6 %其他: 13.6 %其他: 0.8 %其他: 0.8 %Falls Church: 0.3 %Falls Church: 0.3 %Gwynn Oak: 0.2 %Gwynn Oak: 0.2 %Howard: 0.2 %Howard: 0.2 %Jaipur: 0.1 %Jaipur: 0.1 %Koesan: 0.1 %Koesan: 0.1 %Saitama: 0.5 %Saitama: 0.5 %Taoyuan District: 0.1 %Taoyuan District: 0.1 %Thane: 0.1 %Thane: 0.1 %Wixom: 0.1 %Wixom: 0.1 %上海: 0.8 %上海: 0.8 %东京都: 0.2 %东京都: 0.2 %东莞: 0.7 %东莞: 0.7 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.3 %信阳: 0.3 %北京: 1.0 %北京: 1.0 %南充: 0.1 %南充: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %商丘: 0.5 %商丘: 0.5 %嘉兴: 0.1 %嘉兴: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %士嘉堡: 0.2 %士嘉堡: 0.2 %夏延: 0.1 %夏延: 0.1 %大连: 0.1 %大连: 0.1 %大阪: 0.3 %大阪: 0.3 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %宜春: 0.2 %宜春: 0.2 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.3 %密蘇里城: 0.3 %巴黎: 0.3 %巴黎: 0.3 %常德: 0.5 %常德: 0.5 %广州: 1.1 %广州: 1.1 %庆阳: 0.4 %庆阳: 0.4 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %张家口: 3.7 %张家口: 3.7 %得梅因: 0.2 %得梅因: 0.2 %悉尼: 0.1 %悉尼: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %昆明: 0.5 %昆明: 0.5 %景德镇: 0.3 %景德镇: 0.3 %杭州: 0.1 %杭州: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 2.3 %武汉: 2.3 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛桑: 0.3 %洛桑: 0.3 %济南: 0.8 %济南: 0.8 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %湘西: 11.3 %湘西: 11.3 %漯河: 0.1 %漯河: 0.1 %潍坊: 1.1 %潍坊: 1.1 %瓦尔多夫: 0.1 %瓦尔多夫: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.4 %秦皇岛: 0.4 %纽约: 0.2 %纽约: 0.2 %罗克林: 0.2 %罗克林: 0.2 %罗奥尔凯埃: 0.2 %罗奥尔凯埃: 0.2 %耶拿: 0.1 %耶拿: 0.1 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.2 %苏州: 0.2 %苏拉特: 0.2 %苏拉特: 0.2 %荆州: 0.3 %荆州: 0.3 %莫斯科: 0.2 %莫斯科: 0.2 %衡水: 0.1 %衡水: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 18.5 %西宁: 18.5 %西安: 0.5 %西安: 0.5 %诺沃克: 3.5 %诺沃克: 3.5 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %费城: 0.1 %费城: 0.1 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %银川: 0.6 %银川: 0.6 %镇江: 0.1 %镇江: 0.1 %长春: 0.6 %长春: 0.6 %长沙: 3.2 %长沙: 3.2 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.3 %青岛: 0.3 %香港: 0.8 %香港: 0.8 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Falls ChurchGwynn OakHowardJaipurKoesanSaitamaTaoyuan DistrictThaneWixom上海东京都东莞佛山保定信阳北京南充厦门台北台州合肥商丘嘉兴圣安东尼奥士嘉堡夏延大连大阪天津孟买宜春宣城密蘇里城巴黎常德广州庆阳库比蒂诺张家口得梅因悉尼成都扬州新乡昆明景德镇杭州桂林武汉洛杉矶洛桑济南淄博淮南深圳温州湖州湘潭湘西漯河潍坊瓦尔多夫盐城石家庄福州秦皇岛纽约罗克林罗奥尔凯埃耶拿芒廷维尤芝加哥苏州苏拉特荆州莫斯科衡水衢州西宁西安诺沃克贵阳费利蒙费城赫尔辛基运城邯郸郑州鄂州重庆银川镇江长春长沙阿什本青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (987) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return