CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
MA Jinming, XIAO Changjiang, TAO Hongjun, ZHANG Qunfei, TANG Lihui, CAO Jianfeng, LI Yuan, ZHOU Shijie, TANG Yulin, CHEN Yachao, LI Zhengxin. Effect of Ti3AlC2 content on microstructure and properties of PcBN materials[J]. Diamond & Abrasives Engineering, 2024, 44(2): 179-184. doi: 10.13394/j.cnki.jgszz.2023.0048
Citation: MA Jinming, XIAO Changjiang, TAO Hongjun, ZHANG Qunfei, TANG Lihui, CAO Jianfeng, LI Yuan, ZHOU Shijie, TANG Yulin, CHEN Yachao, LI Zhengxin. Effect of Ti3AlC2 content on microstructure and properties of PcBN materials[J]. Diamond & Abrasives Engineering, 2024, 44(2): 179-184. doi: 10.13394/j.cnki.jgszz.2023.0048

Effect of Ti3AlC2 content on microstructure and properties of PcBN materials

doi: 10.13394/j.cnki.jgszz.2023.0048
More Information
  • Received Date: 2023-03-03
  • Accepted Date: 2023-06-28
  • Rev Recd Date: 2023-06-10
  • The monolithic PcBN composite tool materials were prepared at 5.5 GPa and 1450 ℃ with different contents of Ti3AlC2 as the binder phase. The effects of different mass fractions of Ti3AlC2 on the phase composition, microstructure, and mechanical properties of PcBN tool materials were studied. The results show that Ti3AlC2 can decompose completely to form TiC and Al-Ti alloys under high temperature and high pressure, and reacts with cBN to form AlN, TiB2, and TiC0.7N0.3 phases. TiC, AlN, TiB2, and TiC0.7N0.3 are uniformly distributed around the cBN and tightly bonded to the cBN, thereby improving the mechanical properties of PcBN. When the mass fraction of Ti3AlC2 is 25 %, the relative density, bending strength, fracture toughness, and wear ratio of PcBN reach the maximum values, which are 98.9%, 592 MPa, 6.87 MPa·m1/2and 7 350, respectively. When the mass fraction of Ti3AlC2 is 20%, the microhardness of PcBN reaches the maximum value of 4 786.7 HV.

     

  • loading
  • [1]
    何云, 杨泊莘, 高阳华, 等. 聚晶金刚石刀具的制造及应用 [J]. 工具技术,2018,52(11):53-58. doi: 10.16567/j.cnki.1000-7008.2018.11.020

    HE Yun, YANG Boxin, GAO Yanghua, et al. Manufacture and application of PCD tool [J]. Tool Engineering,2018,52(11):53-58. doi: 10.16567/j.cnki.1000-7008.2018.11.020
    [2]
    赵兴利. 新型聚晶立方氮化硼(PcBN)刀具材料研制及其切削机理研究 [D]. 济南: 山东大学, 2011.

    ZHAO Xingli. Development of a new polycrystalline cubic boron nitride (PcBN) tool material and its cutting mechanism [D]. Jinan: Shandong University, 2011.
    [3]
    张喆, 张俊. 聚晶立方氮化硼刀具研究进展 [J]. 超硬材料工程,2017,29(5):52-55. doi: 10.3969/j.issn.1673-1433.2017.05.012

    ZHANG Zhe, ZHANG Jun. Research progress of polycrystalline cubic boron nitride tools [J]. Superhard Material Engineering,2017,29(5):52-55. doi: 10.3969/j.issn.1673-1433.2017.05.012
    [4]
    苗志毅, 冯克明. 绿色切削与PcBN刀具切削技术 [J]. 金刚石与磨料磨具工程,2004,143(5):73-76. doi: 10.13394/j.cnki.jgszz.2004.05.020

    MIAO Zhiyi, FENG Keming. Green cutting and PcBN tool cutting technology [J]. Diamond & Abrasives Engineering,2004,143(5):73-76. doi: 10.13394/j.cnki.jgszz.2004.05.020
    [5]
    王楚琦, 寇自力. 纯相PcBN的高温高压制备综述 [J]. 金刚石与磨料磨具工程,2022,42(2):162-168. doi: 10.13394/j.cnki.jgszz.2021.0409

    WANG Chuqi, KOU Zili. Review of the preparation of pure phase PcBN at high temperature and high pressure [J]. Diamond & Abrasives Engineering,2022,42(2):162-168. doi: 10.13394/j.cnki.jgszz.2021.0409
    [6]
    MCKIE A, WINZER J, SIGALAS I, et al. Mechanical properties of cBN–Al composite materials [J]. Ceramics International,2011,37(1):1-8. doi: 10.1016/j.ceramint.2010.07.034
    [7]
    YUAN Y, CHENG X, CHANG R, et al. Reactive sintering cBN-Ti-Al composites by spark plasma sintering [J]. Diamond and Related Materials,2016,69(1):138-143. doi: 10.1016/j.diamond.2016.08.009
    [8]
    黄建娜, 张洁溪, 马玉琳. 立方氮化硼超硬刀具材料的合成与性能研究 [J]. 粉末冶金工业,2023,33(1):89-93. doi: 10.13228/j.boyuan.issn1006-6543.20210107

    HUANG J ianna, ZHANG Jiexi, MA Yulin. Synthesis and properties of cubic boron nitride superhard tool materials [J]. Powder Metallurgy Industry,2023,33(1):89-93. doi: 10.13228/j.boyuan.issn1006-6543.20210107
    [9]
    武迪. 陶瓷结合剂PcBN的制备与性能研究 [D]. 秦皇岛: 燕山大学, 2018.

    WU Di. Study on preparation and properties of ceramic bond PcBN [D]. Qinhuangdao: Yanshan University, 2018.
    [10]
    SLIPCHENKO, K, VSTRATLICHUK, D, TURKEVICH A, et al. Sintering of cBN based materials with a TaC binder for cutting tool application [J]. Journal of superhard materials:Sverkhtverdye materialy,2020,42(2):3-11. doi: 10.3103/S1063457620020112
    [11]
    李名英. 锂锌铝硅系微晶玻璃cBN复合材料的制备与性能研究 [D]. 广州: 华南理工大学, 2014.

    LI Mingying. Preparation and properties of LZAS glass-ceramic cBN composites [D]. Guangdzhou: South China University Of Technology, 2014.
    [12]
    CHEN C, MO P C, WANG P, et al. Effect of titanium content on microstructure and mechanical properties of PcBN synthesized in cBN-Si3N4-Ti system [J]. Materials Science & Engineering Technology,2020,51(3):391-399. doi: 10.1002/mawe.201900089
    [13]
    TKACHENKO V V, FILONENKO V P, ANDRIANOV M A, et al. Superhard composites with homogeneous microstructure and nanosized binder obtained by reactive sintering in the system cBN-Al-TiC [J]. Glass and Ceramics,2021,77(3):1-8. doi: 10.1007/s10717-021-00311-1
    [14]
    ZHANG L L, LIN F, LV Z, et al. CBN-Al-HfC composites: Sintering behaviors and mechanical properties under high pressure [J]. International Journal of Refractory Metals and Hard Materials,2015,50(1):221-226. doi: 10.1016/j.ijrmhm.2015.01.015
    [15]
    高丽娜, 陈文革, 李树丰. Ti3AlC2陶瓷粉末的研究现状及进展 [J]. 材料导报,2022,36(20):170-180. doi: 10.11896/cldb.20090196

    GAO Lina, CHEN Wenge, LI Shufeng. Research status and progress of Ti3AlC2 ceramic powder [J]. Materials Reports,2022,36(20):170-180. doi: 10.11896/cldb.20090196
    [16]
    朱春城, 钱旭坤, 赫晓东, 等. 燃烧合成Ti3AlC2及其热稳定性 [J]. 稀有金属材料与工程,2009,38(2):86-89.

    ZHU Chuncheng, QIAN Xukun, HE Xiaodong, et al. Combustion synthesis of Ti3AlC2 and its thermal stability [J]. Rare Metal Materials and Engineering,2009,38(2):86-89.
    [17]
    李子扬, 寇自力, 安佩, 等. Ti3AlC2在静高压下的热稳定性 [J]. 材料研究学报,2010,24(4):368-372.

    LI Ziyang, KOU Zili, AN Pei, et al. Thermal stability of Ti3AlC2 under static high pressure [J]. Chinese Journal of Materials Research,2010,24(4):368-372.
    [18]
    KILABYLINA T, BUSHLYA V, PETRUSHA V, et al. Superhard PcBN tool materials with Ti3SiC2 MAX-phase binder: Structure, properties, application [J]. Journal of Superhard Materials,2017,39(3):155-165. doi: 10.3103/S1063457617030029
    [19]
    JIANG Z L, JIAN Q, HAN Y, et al. Performance evaluation of cBN-Ti3AlC2-Al composites fabricated by HTHP method [J]. Ceramics International,2020,46(15):24449-24453. doi: 10.1016/j.ceramint.2020.06.228
    [20]
    梁宝岩, 张旺玺, 王艳芝, 等. 微波烧结制备MAX-cBN复合材料及其反应机理研究 [J]. 材料导报,2016,30(6):66-69. doi: 10.11896/j.issn.1005-023X.2016.06.016

    LIANG Baoyan, ZHANG Wangxi, WANG Yanzhi, et al. Study on the preparation of MAX-cBN composite by microwave sintering and its reaction mechanism [J]. Materials Reports,2016,30(6):66-69. doi: 10.11896/j.issn.1005-023X.2016.06.016
    [21]
    RAMPAI T, LANG C I, SIGALAS I. Investigation of MAX phase/cBN composites [J]. Ceramics International,2013,39(5):4739-4748. doi: 10.1016/j.ceramint.2012.10.279
    [22]
    钱旭坤. 层状Ti3AlC2的燃烧合成及其性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.

    QIAN Xukun. Study on combustion synthesis and performance of layered Ti3AlC2 [D]. Harbin: Harbin Institute of Technology, 2010.
    [23]
    YANG L, GONG J, YUE Z, et al. Preparation and characterization of cBN-based composites from cBN-Ti3AlC2 mixtures [J]. Diamond & Related Materials,2016,66(35):183-187. doi: 10.1016/j.diamond.2016.05.003
    [24]
    蔡明. Ti3AlC2基复合材料的制备及性能研究 [D]. 沈阳: 沈阳理工大学, 2020.

    CAI Ming. Study on preparation and properties of Ti3AlC2 matrix composites [D]. Shenyang: Shenyang Ligong University, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (91) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return