CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
HUANG Jieyu, ZENG Zhaowei, WANG Chengyong, YUAN Zhishan. Fabrication and application of double-layer nanopore[J]. Diamond & Abrasives Engineering, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105
Citation: HUANG Jieyu, ZENG Zhaowei, WANG Chengyong, YUAN Zhishan. Fabrication and application of double-layer nanopore[J]. Diamond & Abrasives Engineering, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105

Fabrication and application of double-layer nanopore

doi: 10.13394/j.cnki.jgszz.2023.0105
More Information
  • Received Date: 2023-05-08
  • Accepted Date: 2023-06-30
  • Rev Recd Date: 2023-05-27
  • Available Online: 2024-06-28
  • Solid-state nanopores have become the most promising single-molecule sequencing tools due to their adjustable pore size, stable physical and chemical properties, strong adaptability to extreme environments, and high integration. In the area of solid-state nanopores research, improving the detection accuracy of single molecules has always been the core concern of researchers. In recent years, the double-layer nanopores has attracted wide attention. Compared with traditional single-layer nanopore, the "pore-cavity-pore" structure of double-layer nanopores provides two molecular recognition sites and nanoconfined space. The two molecular recognition sites provided by the two nanopores can obtain two target signals in a single translocation event, which not only enrich the detection information but also provide the most direct comparison information source for signal analysis. In addition, the "cavity" in the double-layer nanopores can be used as a single-molecule chemical reactor. Therefore, the appearance of double-layer nanopores broadens the application range of nanopore sensors and has an important application prospect in single molecule detection. In this paper, the development history of nanopores is summarized, and the fabrication methods of double-layer nanopores and their applications in the field of single-molecule detection are emphatically introduced.


  • loading
  • [1]
    COULTER W H. Means for counting particles suspended in a fluid: US11281949A [P]. 1953-10-20.
    KASIANOWICZ J J, BRANDIN E, BRANTON D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(24):13770-13773. doi: 10.1073/pnas.93.24.13770
    AKHTARIAN S, MIRI S, DOOSTMOHAMMADI A, et al. Nanopore sensors for viral particle quantification: current progress and future prospects [J]. Bioengineered,2021,12(2):9189-9215. doi: 10.1080/21655979.2021.1995991
    CLARKE J, WU H C, JAYASINGHE L, et al. Continuous base identification for single-molecule nanopore DNA sequencing [J]. Nature Nanotechnology,2009,4(4):265-270. doi: 10.1038/nnano.2009.12
    MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase [J]. Nature Biotechnology,2012,30(4):349-353. doi: 10.1038/nbt.2171
    WENDELL D, JING P, GENG J, et al. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores [J]. Nature Nanotechnology,2009,4(11):765-772. doi: 10.1038/nnano.2009.259
    MULLEY J F, HARGREAVES A D. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing [J]. Peerj,2015,3(3):e1441. doi: 10.7717/peerj.1441
    JAIN M, OLSEN H E, PATEN B, et al. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community [J]. Genome Biology,2016,17(1):239. doi: 10.1186/s13059-016-1103-0
    RANG F J, KLOOSTERMAN W P, JEROEN D R. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy [J]. Genome Biology,2018,19(1):90. doi: 10.1186/s13059-018-1462-9
    BOZA V, BREJOVA B, VINAR T. DeepNano: Deep recurrent neural networks for base calling in MinION Nanopore reads [J]. PLoS ONE,2017,12(6):e0178751. doi: 10.1371/journal.pone.0178751
    LIN B, HUI J, MAO H. Nanopore technology and its applications in gene sequencing [J]. Biosensors,2021,11(7):214. doi: 10.3390/bios11070214
    BULL R A, ADIKARI T N, FERGUSON J M, et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis [J]. Nature Communications,2020,11(1):6272. doi: 10.1038/s41467-019-13858-z
    LI J, STEIN D, MCMULLAN C, et al. Ion-beam sculpting at nanometre length scales [J]. Nature,2001,412(6843):166-169. doi: 10.1038/35084037
    STORM A J, CHEN J H, LING X S, et al. Fabrication of solid-state nanopores with single-nanometre precision [J]. Nature Materials,2003,2(8):537-540. doi: 10.1038/nmat941
    GIERAK J, MADOURI A, BIANCE A L, et al. Sub-5 nm FIB direct patterning of nanodevices [J]. Microelectronic Engineering,2007,84(5/6/7/8):779-783. doi: 10.1016/j.mee.2007.01.059
    YANG J, FERRANTI D C, STERN L A, et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection [J]. Nanotechnology,2011,22(28):285310. doi: 10.1088/0957-4484/22/28/285310
    KWOK H, BRIGGS K, TABARD-COSSA V. Nanopore fabrication by controlled dielectric breakdown [J]. PLoS One,2014,9(3):e92880. doi: 10.1371/journal.pone.0092880
    YANAGI I, ISHIDA T, FUJISAKI K, et al. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process [J]. Scientific Reports,2015,5(1):1-13. doi: 10.9734/JSRR/2015/14076
    VENTA K, SHEMER G, PUSTER M, et al. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores [J]. Acs Nano,2013,7(5):4629-4636. doi: 10.1021/nn4014388
    SAWAFTA F, CARLSEN A T, HALL A R. Membrane thickness dependence of nanopore formation with a focused helium ion beam [J]. Sensors,2014,14(5):8150-8161. doi: 10.3390/s140508150
    LARKIN J, HENLEY R, BELL D C, et al. Slow DNA transport through nanopores in hafnium oxide membranes [J]. Acs Nano,2013,7(11):10121-10128. doi: 10.1021/nn404326f
    GARAJ S, HUBBARD W, REINA A, et al. Graphene as a subnanometre trans-electrode membrane [J]. Nature,2010,467(7312):190-193. doi: 10.1038/nature09379
    MERCHANT C. DNA translocation through graphene nanopores [J]. Biophysical Journal,2010,100(3):521a. doi: 10.1016/j.bpj.2010.12.3046
    YUAN Z, LIU Y, DAI M. Controlling DNA translocation through solid-state nanopores [J]. Nanoscale Research Letters,2020,15(1):80. doi: 10.1186/s11671-020-03308-x
    IVANOV A P, INSTULI E, MCGILVERY C M, et al. DNA tunneling detector embedded in a nanopore [J]. Nano Letters,2011,11(1):279-285. doi: 10.1021/nl103873a
    WANG Y, SADAR J, TSAO C W, et al. Nanopore chip with self-aligned transverse tunneling junction for DNA detection [J]. Bisosensors and Bioelectronics,2021,193:113552. doi: 10.1016/j.bios.2021.113552
    GRAF M, LIU K, SARATHY A, et al. Transverse detection of DNA in a MoS2 nanopore [J]. Biophysical Journal,2018,114(3):180a. doi: 10.1016/j.bpj.2017.11.1005
    XIE P, XIONG Q, FANG Y, et al. Local electrical potential detection of DNA by nanowire-nanopore sensors [J]. Nature Nanotechnology,2012,7(2):119-125. doi: 10.1038/nnano.2011.217
    LI W, ZHOU J, MACCAFERRI N, et al. Enhanced optical spectroscopy for multiplexed DNA and protein-sequencing with plasmonic nanopores: Challenges and prospects [J]. Analytical Chemistry,2022,94(2):503-514. doi: 10.1021/acs.analchem.1c04459
    LANGECKER M, PEDONE D, SIMMEL F C, et al. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores [J]. Nano Letters,2011,11(11):5002-5007. doi: 10.1021/nl2030079
    LING X S. DNA sequencing using nanopores and kinetic proofreading [J]. Quantitative Biology,2020,8(3):187-194. doi: 10.1007/s40484-020-0201-x
    LIU X, SKANATA M M, STEIN D. Entropic cages for trapping DNA near a nanopore [J]. Nature Communications,2015,6:6222. doi: 10.1038/ncomms7222
    PEDONE D, LANGECKER M, MUENZER A M, et al. Fabrication and electrical characterization of a pore-cavity-pore device [J]. Journal of Physics-Condensed Matter,2010,22(45):454115. doi: 10.1088/0953-8984/22/45/454115
    叶佳佳. 基于纳米孔测序的磁镊微控系统设计与制造 [D]. 南京: 东南大学, 2018.

    YE Jiajia. Design and fabrication of magnetic tweezers system based on nanopore sequencing [D]. Nanjing: Southeast University, 2018.
    YANG H, WEI S, JI A, et al. Double layer nanopore fabricated by FIB and TEM [C]// IEEE. Proceedings of the 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Shanghai, 2017: 274-277.
    LAM M H, BRIGGS K, KASTRITIS K, et al. Entropic trapping of DNA with a nanofiltered nanopore [J]. Acs Applied Nano Materials,2019,2(8):4773-4781. doi: 10.1021/acsanm.9b00606
    PEDONE D, LANGECKER M, ABSTREITER G, et al. A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: Confined diffusion and narrow escape [J]. Nano Letters,2011,11(4):1561-1567. doi: 10.1021/nl104359c
    HARMS Z D, HAYWOOD D G, KNELLER A R, et al. Single-particle electrophoresis in nanochannels [J]. Analytical Chemistry,2015,87(1):699-705. doi: 10.1021/ac503527d
    CHOI J, JIA Z, RIAHIPOUR R, et al. Label-free identification of single mononucleotides by nanoscale electrophoresis [J]. Small,2021,17(42):2102567. doi: 10.1002/smll.202102567
    ATHAPATTU U S, RATHNAYAKA C, VAIDYANATHAN S, et al. Tailoring thermoplastic in-plane nanopore size by thermal fusion bonding for the analysis of single molecules [J]. Acs Sensors,2021,6(8):3133-3143. doi: 10.1021/acssensors.1c01359
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (50) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint