CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHANG Xiaohong, HE Tianzhongsen, WEN Dongdong, LI Chao, WANG Zhuoran, LONG Yixiang. Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131
Citation: ZHANG Xiaohong, HE Tianzhongsen, WEN Dongdong, LI Chao, WANG Zhuoran, LONG Yixiang. Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2024, 44(3): 374-381. doi: 10.13394/j.cnki.jgszz.2023.0131

Experimental evaluation of grinding zirconia ceramics with leaf vein bionic fractal textured diamond grinding wheel

doi: 10.13394/j.cnki.jgszz.2023.0131
More Information
  • Received Date: 2023-06-20
  • Rev Recd Date: 2023-09-06
  • Available Online: 2023-11-06
  • To address the challenges of high grinding force and poor processing quality in grinding zirconia ceramics with traditional grinding wheels, this study explores the use of leaf vein bionic fractal textured diamond grinding wheels. These wheels, designed with fractal angles of 30.0°, 45.0°, and 60.0°, leverage the leaf vein bionic fractal texture's capabilities in reducing drag, guiding flow, heat dissipation, and mass transfer. The effects of the original grinding wheel and the three types of bionic fractal grinding wheels on the surface roughness (Ra), grinding force, and grinding force ratio of zirconia ceramics were compared and analyzed. The results show that the bionic fractal grinding wheels outperform the original grinding wheel. Specifically, compared to the original grinding wheel, the normal grinding force of the bionic fractal grinding wheel is reduced by 12.7% to 55.8%, and the tangential grinding force is reduced by 8.1% to 40.3%. The bionic fractal grinding wheels have not obvious effects on the surface roughness Ra. When the fractal angle is 30.0°, the minimum grinding force ratio is 1.4 to 3.0, and the minimum surface roughness Ra is 1.824 μm.

     

  • loading
  • [1]
    张云龙. SiC/SiC复合材料微孔激光--化学复合加工技术研究 [D]. 山东: 青岛理工大学, 2022

    ZHANG Yunlong. Research on microporous laser-chemical composite processing technology for SiC/SiC composite materials [D]. Shandong: Qingdao University of Technology, 2022.
    [2]
    廖燕玲, 张凤林, 李凯江, 等. 微结构砂轮对不同陶瓷的磨削性能 [J]. 金刚石与磨料磨具工程,2022,42(3):290-299. doi: 10.13394/j.cnki.jgszz.2021.0204

    LIAO Yanling, ZHANG Fenglin, LI Kaijiang, et al. Grinding performance of micro-texured grinding wheel on different ceramic materials [J]. Diamond and Abrasives Engineering,2022,42(3):290-299. doi: 10.13394/j.cnki.jgszz.2021.0204
    [3]
    PANG J Z, JI X, NIU Y, et al. Experimental investigation of grinding force and materialremoval mechanism of laser-structured zirconia ceramics [J]. Micromachines,2022,13(5):710. doi: 10.3390/mi13050710
    [4]
    DENG H, WU X S, YUCHI G Z, et al. Research on laser preparation and grinding performance of hydrophilic structured grinding wheels [J]. Ceramics International,2023,49(5):7649-7661. doi: 10.1016/j.ceramint.2022.10.240
    [5]
    ALI S M, JONHNSIN N N, MADHAVADAS V, et al. Investigation on the effect of grinding wheel for grinding of AISI D3 tool steel under different conditions [J]. Engineering Research Express,2022,4(4):045036. doi: 10.1088/2631-8695/aca956
    [6]
    MA Z L, WANG Q H, CHEN H, et al. Surface prediction in laser-assisted grinding process considering temperature-dependent mechanical properties of zirconia ceramic [J]. Journal of Manufacturing Processes,2022,80:491-503.
    [7]
    CHEN Z, ZHANG X H, WEN D D, et al. Improved grinding performance of SiC using an innovative bionic vein-like structured grinding wheel optimized by hydrodynamics [J]. Journal of Manufacturing Processes,2023(101):195-207. doi: 10.1016/j.jmapro.2023.06.010
    [8]
    ZHANG X H, KANG Z X, LI S, et al. Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics [J]. Ceramics International,2019,45(15):18487-18500. doi: 10.1016/j.ceramint.2019.06.067
    [9]
    MA Z L, WANG Z, WANG X Z, et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic [J]. Ceramics International,2020,46(1):921-929. doi: 10.1016/j.ceramint.2019.09.051
    [10]
    ZHANG X H, LI S, KANG Z X, et al. Experimental investigations on the impact of different laser macro-structured diamond grinding wheels on alumina ceramic [J]. The International Journal of Advanced Manufacturing Technology,2018(96):5-8.
    [11]
    WEN D D, WAN LL, ZHANG X H, et al. Grinding performance evaluation of SiC ceramic by bird feather-like structure diamond grinding wheel [J]. Journal of Manufacturing Processes,2023(95):382-391. doi: 10.1016/j.jmapro.2023.04.024
    [12]
    BUTLER-SMITH P W, AXINTE D A, DAINE M. Ordered diamond micro-arrays for ultraprecision grinding—An evaluation in Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture. 2010, 51 (1): 54-66.
    [13]
    WALTER C, KOMISCHKE T, KUSTER F, et al. Laser-structured grinding tools—Generation of prototype patterns and performance evaluation [J]. Journal of Materials Processing Technology,2014,214(4):951-961. doi: 10.1016/j.jmatprotec.2013.11.015
    [14]
    WALTER C, KOMISCHKE T, WEINGARTNER E, et al. Structuring of CBN grinding tools by ultrashort pulse laser ablation [J]. Procedia CIRP,2014(14):31-36. doi: 10.1016/j.procir.2014.03.093
    [15]
    YU H Y, LU Y S, WANG J. Study on wear of the grinding wheel with an abrasive phyllotactic pattern [J]. Wear,2016(358/359):89-96.
    [16]
    LI S, YUCHI G Z, ZHANG X H, et al. Grinding behavior of biomimetic fractal-branched silicon carbide ceramic inspired from leaf-vein structure [J]. Ceramics International,2022,48(13):18212-18223. doi: 10.1016/j.ceramint.2022.03.080
    [17]
    ANTONIO F M. Constructal branching design for fluid flow and heat transfer [J]. International Journal of Heat and Mass Transfer,2018(122):204-211. doi: 10.1016/j.ijheatmasstransfer.2018.01.095
    [18]
    UYLINGS H B M. Optimization of diameters and bifurcation angles in lung and vascular tree structures [J]. Bulletin of Mathematical Biology,1977,39(5):509-520. doi: 10.1016/S0092-8240(77)80054-2
    [19]
    DENG H, CHEN G, HE J, et al. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method [J]. Optics and Laser Technology,2016(80):41-50. doi: 10.1016/j.optlastec.2015.12.021
    [20]
    MURRAY C D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume [J]. Proceedings of the National Academy of Sciences of the United States of America,1926,12(3):207-214.
    [21]
    MURRAY C D. The physiological principle of minimum work applied to the angle of branching of arteries [J]. The Journal of General Physiology,1926,9(6):835-841. doi: 10.1085/jgp.9.6.835
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (314) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return