CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
ZOU Qin, REN Yu, LI Yanguo, REN Haibo. Preparation and performance characterization of (Ti,Nb) Cx composite material[J]. Diamond & Abrasives Engineering, 2024, 44(5): 575-580. doi: 10.13394/j.cnki.jgszz.2023.0164
Citation: ZOU Qin, REN Yu, LI Yanguo, REN Haibo. Preparation and performance characterization of (Ti,Nb) Cx composite material[J]. Diamond & Abrasives Engineering, 2024, 44(5): 575-580. doi: 10.13394/j.cnki.jgszz.2023.0164

Preparation and performance characterization of (Ti,Nb) Cx composite material

doi: 10.13394/j.cnki.jgszz.2023.0164
More Information
  • Received Date: 2023-08-18
  • Accepted Date: 2023-12-06
  • Rev Recd Date: 2023-11-15
  • Available Online: 2023-12-11
  • Objectives: The aim was to prepare a variety of non-stoichiometric (Ti, Nb)Cx PCD tool binder composites using TiC and transition metal Nb by mechanical alloying (MA) technology. The effects of different sintering temperatures and Nb contents on the phase compositions, microstructures, and mechanical properties of the composites were investigated to provide a scientific basis for optimizing the properties of PCD tool binders. The specific tasks included preparing (Ti, Nb)Cx composites with varying ratios, analyzing their solid-solution behavior at different temperatures, and evaluating their hardness and fracture toughness. Methods: High purity TiC and Nb powders were selected as raw materials for the experiment, and the MA technology was used to achieve uniform mixing of the two materials. In order to investigate the effect of sintering temperature on the properties of composite materials, various sintering temperatures ranging from 1300 to 1700 ℃ were set. The sintered samples were subjected to phase analysis using an X-ray diffractometer, and the data were analyzed using Jade software. Subsequently, the fracture morphology of the sintered body was observed using scanning electron microscopy (SEM), and the hardness and fracture toughness of the composite materials were measured using a Vickers hardness tester. Results: Within the sintering temperature range of 1300 to 1700 ℃, the solid-solution degree of TiC and Nb gradually increases with the increase in temperature. At higher temperatures, the diffusion between TiC and Nb accelerates, forming a more stable solid-solution, and the phase composition tends to stabilize. At the same sintering temperature, the hardness of the (Ti, Nb)Cx composite increases gradually with the increase in Nb content, indicating that the introduction of Nb enhances the overall hardness of the composite. Especially when the sintering temperature is 1600 ℃, the (Ti, Nb)C0.50.5 composite exhibits the best mechanical properties with a hardness of 23.0 GPa and fracture toughness of 7.20 MPa·m1/2. The results show that under these temperature and ratio conditions, the composite achieves the best solid-solution state, has fewer internal defects, moderate grain size, and optimal mechanical properties. Conclusions: The sintering temperature and Nb content have significant impacts on the phase composition and mechanical properties of (Ti,Nb)Cx composite materials. Controlling these two parameters can optimize the hardness and toughness of the composite materials, thereby enhancing their application potential in PCD cutting tools. The higher sintering temperature is conducive to the full solid-solution of TiC and Nb, forming a more stable crystalline phase structure and improving the mechanical properties of the material. Future research could explore the influences of introducing other transition group metals on the properties of composite materials in order to develop higher-performance PCD tool binders. Others: Although the main objective of this study is to optimize the performance of (Ti,Nb)Cx PCD tool binders, the mechanical alloying techniques and analytical methods used in this research have the potential for broader applications. The mechanical alloying technology is not only suitable for the development of PCD tool materials but also for the preparation of other high-performance composite materials. At the same time, the combination of X-ray diffraction analysis and scanning electron microscopy provides valuable data support for the field of materials science, which helps deepen the understanding of the microstructure and phase composition of materials, thereby promoting research progress in the field.

     

  • loading
  • [1]
    MA F, SHI Z, LIU P, et al. Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working [J]. Materials Characterization,2016,120:304-310. doi: 10.1016/j.matchar.2016.09.010
    [2]
    MA F, ZHOU J, LIU P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites [J]. Materials Characterization,2017,127:27-34. doi: 10.1016/j.matchar.2017.02.004
    [3]
    WANG R, GU D, HUANG G, et al. Multilayered gradient titanium-matrix composites fabricated by multi-material laser powder bed fusion using metallized ceramic: Forming characteristics, microstructure evolution, and multifunctional properties [J]. Additive Manufacturing,2023,62:103407. doi: 10.1016/j.addma.2023.103407
    [4]
    XIONG Y, ZHANG F, HUANG Y, et al. Multiple strengthening via high-entropy alloy particle addition in titanium matrix composites fabricated by spark plasma sintering [J]. Materials Science and Engineering A,2022,859:144235. doi: 10.1016/j.msea.2022.144235
    [5]
    YU H L, ZHANG W, Wang H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding [J]. Journal of Alloys and Compounds,2017,701:244-255. doi: 10.1016/j.jallcom.2017.01.084
    [6]
    HEYDARI L, LIETOR P F, CORPAS-IGLESIAS F A, et al. Ti(C, N) and WC-based cermets: A review of synthesis, properties and applications in additive manufacturing [J]. Materials,2021,14(22):6786. doi: 10.3390/ma14226786
    [7]
    HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: An overview [J]. Composites Part A: Applied Science and Manufacturing,2019,121:418-438. doi: 10.1016/j.compositesa.2019.04.005
    [8]
    HAN C, BABICHEVA R, CHUA J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Additive Manufacturing,2020,36:101466. doi: 10.1016/j.addma.2020.101466
    [9]
    JANG J H, LEE C, HEO Y, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Materialia,2012,60(1):208-217. doi: 10.1016/j.actamat.2011.09.051
    [10]
    刘战强. 先进刀具设计技术: 刀具结构, 刀具材料与涂层技术 [J]. 航空制造技术,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002

    LIU Zhanqiang. Advanced tool design technology: Tool structure, tool material and coating technology [J]. Aeronautical Manufacturing Technology,2006(7):38-42. doi: 10.3969/j.issn.1671-833X.2006.07.002
    [11]
    李少峰, 刘维良, 彭牛生, 等. 金属陶瓷刀具材料研究进展 [J]. 陶瓷学报,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032

    LI Shaofeng, LIU Weiliang, PENG Niusheng, et al. Research progress of cermet tool materials [J]. Chinese Journal of Ceramics,2010,31(1):140-144. doi: 10.3969/j.issn.1000-2278.2010.01.032
    [12]
    张宝国, 刘战强, 张丽, 等. 聚晶金刚石 (PCD) 刀具在活塞加工中的应用 [J]. 工具技术,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025

    ZHANG Baoguo, LIU Zhanqiang, ZHANG Li, et al. Apply of PCD cutting tool in machining piston [J]. Tool Technology,2007,41(9):75-77. doi: 10.3969/j.issn.1000-7008.2007.09.025
    [13]
    OH N R, LEE S K, HWANG K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite [J]. Scripta Materialia,2016,112:123-127. doi: 10.1016/j.scriptamat.2015.09.028
    [14]
    李艳国, 王明阳, 邹芹. 高熵碳/氮/硼化物陶瓷的增韧研究进展 [J]. 燕山大学学报,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001

    LI Yanguo, WANG Mingyang, ZOU Qin. Progress in toughening of high-entropy non-oxide ceramics [J]. Journal of Yanshan University,2024,48(5):377-395. doi: 10.3969/j.issn.1007-791X.2024.05.001
    [15]
    LI X, XIANG J, HU W. {111 twinning structure and interfacial energy in nonstoichiometric TiCx with ordered carbon vacancies [J]. Materials Characterization,2014,90:94-98. doi: 10.1016/j.matchar.2014.01.026
    [16]
    YI D, YU P, HU B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites [J]. Materials & Design,2013,52:572-579. doi: 10.1016/j.matdes.2013.05.097
    [17]
    薛建新, 游顺英, 虞建明. 聚晶金刚石 (PCD) 刀具的开发与应用 [J]. 工具技术,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016

    XUE Jianxin, YOU Shunying, YU Jianming. Development and application of polycrystalline diamond (PCD) tool [J]. Tool Technology,2003,37(4):45-47. doi: 10.3969/j.issn.1000-7008.2003.04.016
    [18]
    冯可桃, 吕健, 阚高辉, 等. 烧结过程氮气分压对(Ti, Nb)(C, N)基金属陶瓷组织和性能的影响 [J]. 稀有金属与硬质合金,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08

    FENG Ketao, LV Jian, KAN Gaohui, et al. Effect of nitrogen partial pressure during sintering on microstructure and properties of (Ti, Nb)(C, N) -based cermets [J]. Rare Metals and Cemented Carbide,2019,49(6):47-54. doi: 10.19990/j.issn.1004-0536.2021.06.047.08
    [19]
    KHAN H, YERRAMILLI A S, D'OLIVEIRA A, et al. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD [J]. Canadian Journal of Chemical Engineering,2020,98(6):1255-1266. doi: 10.1002/cjce.23747
    [20]
    CARDINAL S, MALCHERE A, GARNIER V, et al. Microstructure and mechanical properties of TiC-TiN based cermets for tools application [J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):521-527. doi: 10.1016/j.ijrmhm.2008.10.006
    [21]
    杨天恩, 熊计, 李体军, 等. 球磨时间对Ti(C0.7, N0.3)晶粒及Ti(C0.7, N0.3)基金属陶瓷组织和性能的影响 [J]. 工程科学与技术,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016

    YANG Tianen, XIONG Ji, LI Tijun, et al. Effect of milling time on Ti(C0.7, N0.3) and microstructure and properties of Ti(C0.7, N0.3)-based cermets [J]. Engineering Science and Technology,2017,49(1):123-131. doi: 10.15961/j.jsuese.2017.01.016
    [22]
    单忠德, 朱福先. 应用 PCD 刀具铣削砂型的刀具磨损机理和预测模型 [J]. 机械工程学报,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124

    SHAN Zhongde, ZHU Fuxian. Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould [J]. Chinese Journal of Mechanical Engineering,2018,54(17):124-132. doi: 10.3901/JME.2018.17.124
    [23]
    葛英飞, 边卫亮, 傅玉灿, 等. PCD 刀具高速铣削 SiCp/Al 复合材料切削温度试验研究 [J]. 工具技术,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007

    GE Yingfei, BIAN Weiliang, FU Yucan, et al. Experimental study on temperature during high speed milling of SiCp/Al composites using PCD tool [J]. Tool & Technology,2011,45(8):31-35. doi: 10.3969/j.issn.1000-7008.2011.08.007
    [24]
    李来来, 金头男, 符寒光, 等. 激光熔覆原位合成(Ti, Nb)C强化Ni45涂层的微观组织与耐磨性研究 [J]. 热加工工艺,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220

    LI Lailai, JIN Tounan, FU Hanguang, et al. Study on microstructure and wear resistance of Ni45 coatings strengthened by in-situ synthesis (Ti, Nb)C by laser cladding [J]. Hot Working Technology,2019,50(8):81-85, 91. doi: 10.14158/j.cnki.1001-3814.20200220
    [25]
    邹芹, 王鹏, 徐江波, 等. 金属基自润滑复合材料固体润滑剂研究进展 [J]. 燕山大学学报,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003

    ZOU Qin, WANG Peng, XU Jiangbo, et al. Research progress of solid lubricants of metal matrix self-lubricating composites [J]. Journal of YanShan University,2023,47(5):398-410. doi: 10.3969/j.issn.1007-791X.2023.05.003
    [26]
    武美玲, 尹育航, 丁冬海, 等. 自蔓延高温合成法制备金刚石工具材料研究现状 [J]. 材料热处理学报,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500

    WU Meiling, YIN Yuhang, DING Donghai, et al. Research status of diamond tool materials prepared by self-propagating high-temperature synthesis [J]. Journal of Materials Heat Treatment,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500
    [27]
    邹芹, 李壮, 李艳国, 等. 中熵碳化物陶瓷TiC0.4/VC/NbC结合的WC基硬质合金合成与性能 [J]. 中国有色金属学报,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353

    ZOU Qin, LI Zhuang, LI Yanguo, et al. Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics [J]. The Chinses Journal of Nonferrous Metals,2023,33(6):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353
    [28]
    ZHANG Z, GENG C, KE Y, et al. Processing and mechanical properties of nonstoichiometric TiC (0.3≤ x ≤0.5) [J]. Ceramics International,2018,44(15):18996-19001. doi: 10.1016/j.ceramint.2018.07.141
    [29]
    邝宏有, 戴炳蔚, 吴育藩. WC-11%(Ti, W)(Ta, Nb)C-11%Co合金制取过程中碳量和球磨时间的优化 [J]. 硬质合金,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009

    KUANG Hongyou, DAI Bingwei, WU Yufan. Optimization of carbon content and ball milling time in Preparation of WC-11%(Ti, W)(Ta, Nb)C-11%Co alloy [J]. Journal of Cemented Carbide,2012,39(2):111-117. doi: 10.3969/j.issn.1003-7292.2012.02.009
    [30]
    项忠楠, 李战江, 黄水根, 等. 烧结温度对(Ti,W,Mo,Nb)(C,N)-(Co,Ni)金属陶瓷组织结构和性能的影响 [J]. 稀有金属材料与工程,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228

    XIANG Zhongnan, LI Zhanjiang, HUANG Shuigen, et al. Effect of sintering temperature on microstructure and properties of (Ti, W, Mo, Nb)(C, N)-(Co, Ni) cermet [J]. Rare Metal Materials and Engineering,2021,50(4):1179-1186. doi: 10.12442/j.issn.1002-185X.20200228
    [31]
    许育东, 刘宁, 石敏, 等. (Ti, Mo, W, Ta, V, Nb)(C, N) 多元陶瓷相的价电子结构 [J]. 硅酸盐通报,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002

    XU Yudong, LIU Ning, SHI Min, et al. Valence electron structure (VES) of (Ti, Mo, W, Ta, V, Nb)(C, N) ceramic multiphase in cermets [J]. Bulletin of Silicate,2005,24(2):8-12. doi: 10.3969/j.issn.1001-1625.2005.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (992) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return