CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
ZHANG Jianhua, LI Ang, HU Tingting, DU Quanbin, CUI Bing, ZHANG Liyan, WANG Lei, MAO Wangjun. Research status of thermal damage inhibition technology for diamond[J]. Diamond & Abrasives Engineering, 2024, 44(5): 563-574. doi: 10.13394/j.cnki.jgszz.2023.0166
Citation: ZHANG Jianhua, LI Ang, HU Tingting, DU Quanbin, CUI Bing, ZHANG Liyan, WANG Lei, MAO Wangjun. Research status of thermal damage inhibition technology for diamond[J]. Diamond & Abrasives Engineering, 2024, 44(5): 563-574. doi: 10.13394/j.cnki.jgszz.2023.0166

Research status of thermal damage inhibition technology for diamond

doi: 10.13394/j.cnki.jgszz.2023.0166
More Information
  • Received Date: 2023-08-21
  • Accepted Date: 2023-12-06
  • Rev Recd Date: 2023-11-22
  • Available Online: 2023-12-11
  • Significance: As the hardest material, diamond is widely used in various cutting and grinding tools. During the preparation process of diamond tools, thermal damage to diamonds is almost inevitable. The thermal damage to diamonds primarily includes graphitization, breakage, cracking, and chemical erosion. Graphitization of diamonds is a lattice transformation process of C atoms essentially, which requires sufficient energy to overcome the energy barrier. Consequently, during the preparation process of diamond tools, diamonds undergo varying degrees of graphitization due to high temperatures and catalyst elements. Breakage and cracking of diamonds primarily orginate from thermal mismatch between the diamond and the matrix metal, including its carbides, where carbides act as inducers of local residual stress, facilitating crack propagation. Chemical erosion of diamonds mainly refers to the process in which C atoms on the surface of diamonds react with active elements through diffusion during the sintering process, therefore deteriorating the diamonds. However, due to the poor wettability of diamonds, it often necessitates the addition of active elements such as Ti, Cr, V, etc., to react with diamonds and improve the holding force. Current suppression technologies for diamond thermal damage can be roughly divided into surface coating of diamonds, adjustment of matrix material properties, and optimization of forming technology. Progress: Diamond surface coating utilizes the unbonded atoms present on the diamond surface, which can react with certain elements at sufficiently high temperatures to form carbides, thereby enhancing the wettability between the matrix metal and the diamonds. Depending on the type of coating, it can generally be classified into metal and non-metal coatings. Metal coatings not only fill and repair defects in diamonds but also improve the bonding strength between the metal and diamonds. Common coating metals include Ni, Ti, W, Cr, and alloys are also selected as coating materials. For non-metal coatings, elements such as B and Si are typically chosen, as they can form carbide layers on the diamond surface, protect the diamond structure, reduce diamond oxidation, and prevent diamonds from being eroded and damaged by strong carbon elements in the matrix material. The choice of matrix material plays a crucial role in mitigating thermal damage to diamonds. Low-melting-point matrix materials can effectively reduce sintering temperature and inhibit the graphitization of diamonds consequently. Furthermore, incorporating appropriate active elements into the matrix material can enhance the interfacial strength between diamond and the matrix, thereby improving the performance of diamond tools. Currently, the modulation of matrix material properties is primarily focused on alloy optimization and composite material development. Alloy optimization aims to reduce diamond thermal damage by refining the alloy composition of the matrix material. Researchers have experimented with elements such as Si, Hf, and Zr, discovering that these elements can mitigate the erosion of diamonds by active elements and reduce diamond thermal damage. Additionally, amorphous Ni-based alloys, due to their low melting point and narrow melting range, have been used as brazing materials to enhance the performance of diamond tools. Composite material development seeks to improve mechanical properties while utilizing suitable reinforcing phases to absorb catalytic elements within the matrix, thereby reducing diamond graphitization. Additionally, reinforcing phases could optimize the diamond interface condition, leading to both increased interfacial strength and reduced diamond thermal damage. Molding technology significantly impacts the lifespan and performance of diamond tools, particularly through parameters such as molding temperature, soaking time, molding pressure, and atmosphere. Molding temperature and soaking time determine grain growth in the matrix, diamond thermal damage, and the interfacial growth between diamond and the matrix. Molding pressure affects the density of the matrix material, which in turn influences its mechanical properties. The atmosphere, typically vacuum or protective, must be carefully controlled, as even trace amounts of moisture or oxygen could lead to diamond oxidation, degrading tool performance and lifespan. Diamond tools are typically manufactured through methods such as hot-press sintering and brazing, while additive manufacturing is emerging as a promising direction in tool fabrication. Conclusions and Prospects: Future research to mitigate diamond thermal damage could focus on three main areas: theoretical analysis of diamond interfaces at the microscale, the establishment of a guidance system matching diamond tool matrix materials with service environments, and investigation of the mechanical behavior of diamonds interfaced during the molding process.

     

  • loading
  • [1]
    毛雅梅, 黑鸿君, 高洁, 等. 钎焊金刚石研究进展及其工具的应用 [J]. 机械工程学报,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080

    MAO Yamei, HEI Hongjun, GAO Jie, et al. Research progress of brazing diamond and application of tools [J]. Journal of Mechanical Engineering,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080
    [2]
    卢金斌, 汤峰, 孟普, 等. Ni-Cr合金真空钎焊金刚石的热损伤分析 [J]. 焊接学报,2010,31(8):25-28,114.

    LU Jinbin, TANG Feng, MENG Pu, et al. Thermal damage analysis of vacuum brazing diamond with Ni-Cr alloy [J]. Transactions of the China Welding Institution,2010,31(8):25-28,114.
    [3]
    郭晓光, 翟昌恒, 金洙吉, 等. 铁基作用下的金刚石石墨化研究 [J]. 机械工程学报,2015,51(17):162-168. doi: 10.3901/JME.2015.17.162

    GUO Xiaoguang, ZHAI Changheng, JIN Zhuji, et al. The study of diamond graphitization under the action of iron-based catalyst [J]. Journal of Mechanical Engineering,2015,51(17):162-168. doi: 10.3901/JME.2015.17.162
    [4]
    吕祎强, 张振宇, 刘冬冬, 等. 金刚石损伤的原位扫描电镜研究 [J]. 硬质合金,2022,39(2):85-93. doi: 10.3969/j.issn.1003-7292.2022.02.002

    LV Yiqiang, ZHANG Zhenyu, LIU Dongdong, et al. Research on in-situ scanning electron microscope of diamond damage [J]. Cemented Carbides,2022,39(2):85-93. doi: 10.3969/j.issn.1003-7292.2022.02.002
    [5]
    TULIC S, WAITZ T, CAPLOVICOVA M, et al. Catalytic graphitization of single-crystal diamond [J]. Carbon,2021,185:300-313. doi: 10.1016/j.carbon.2021.08.082
    [6]
    程伟. 金刚石磨粒与Ni-Cr合金固态反应的实验与仿真研究 [D]. 厦门: 华侨大学, 2022.

    CHENG Wei. Experimental and simulation study on solid-state reaction between diamond abrasives and Ni-Cr binary alloy [D]. Xiamen: Huaqiao University. 2022.
    [7]
    COOIL S P, WELLS J W, HU D, et al. Controlling the growth of epitaxial graphene on metalized diamond (111) surface [J]. Applied Physics Letters,2015,107:181603. doi: 10.1063/1.4935073
    [8]
    CUI Z P, LI G, ZONG W J. A polishing method for single crystal diamond (100) plane based on nano silica and nano nickel powder [J]. Diamond and Related Materials,2019,95:141-153. doi: 10.1016/j.diamond.2019.04.016
    [9]
    杨亚楠, 王海阔, 侯志强, 等. 金刚石-WC-Co复合材料的高温高压合成 [J]. 金刚石与磨料磨具工程,2021,41(2):53-58. doi: 10.13394/j.cnki.jgszz.2021.2.0009

    YANG Yanan, WANG Haikuo, HOU Zhiqiang, et al. Fabrication of diamond-WC-Co composites at high temperature and high pressure [J]. Diamond & Abrasives Engineering,2021,41(2):53-58. doi: 10.13394/j.cnki.jgszz.2021.2.0009
    [10]
    UEDA K, AICHI S, ASANO H. Direct formation of graphene layers on diamond by high-temperature annealing with a Cu catalyst [J]. Diamond and Related Materials,2016,63:148-152. doi: 10.1016/j.diamond.2015.10.021
    [11]
    孟普. Ni-Cr合金钎焊金刚石接头残余应力分析 [J]. 金刚石与磨料磨具工程,2013,33(5):57-60,66. doi: 10.13394/j.cnki.jgszz.2013.05.008

    MENG Pu. Residual stress analysis of diamond joint brazed with Ni-Cr alloy [J]. Diamond & Abrasives Engineering,2013,33(5):57-60,66. doi: 10.13394/j.cnki.jgszz.2013.05.008
    [12]
    BUHL S, LEINENBACH C, SPOLENAK R, et al. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond–metal joints [J]. Journal of Materials Science,2010,45:4358-4368. doi: 10.1007/s10853-010-4260-7
    [13]
    MUKHOPADHYAY P, SIMHAN D R, GHOSH A. Challenges in brazing large synthetic diamond grit by Ni-based filler alloy [J]. Journal of Materials Processing Technology,2017,250:390-400. doi: 10.1016/j.jmatprotec.2017.08.004
    [14]
    WANG S Y, XIAO B, SU S C, et al. Interfacial characteristics and thermal damage of brazed W-coated diamond with Ni- based filler alloy [J]. Diamond and Related Materials,2021,116:108401. doi: 10.1016/j.diamond.2021.108401
    [15]
    FENG H, YU J K, TAN W. Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles [J]. Materials Chemistry and Physics,2010,124:851-855. doi: 10.1016/j.matchemphys.2010.08.003
    [16]
    徐俊. 金刚石盐浴镀钛对金刚石/铝复合材料组织及性能的影响 [D]. 南京: 东南大学, 2019.

    XU Jun. Effect of salt bath plating Ti on diamond particles on the microstructure and properties of diamond/Al composites [D]. Nanjing:Southeast University. 2019.
    [17]
    王艳辉. 金刚石磨料表面镀钛层的制备、结构、性能及应用 [D]. 秦皇岛: 燕山大学, 2003.

    WANG Yanhui. Preparation, structure, properties and applications of titanium coating on diamond abrasive [D]. Qinhuangdao: Yanshan University, 2003.
    [18]
    BHOWMICK S, BANERJI A, ALPAS A T. Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon [J]. Carbon,2016,109:795-804. doi: 10.1016/j.carbon.2016.08.036
    [19]
    HONG S M, AKAISHI M, KANDA H, et al. Behaviour of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate [J]. Journal of Materials Science,1988,23(11):3821-3826. doi: 10.1007/BF01106798
    [20]
    冒爱琴, 何宜柱, 郑翠红, 等. 金刚石表面金属化的研究现状 [J]. 材料导报,2005(2):31-33. doi: 10.3321/j.issn:1005-023X.2005.02.009

    MAO Aiqin, HE Yizhu, ZHENG Cuihong, et al. Development of cladding on diamond [J]. Materials Reports,2005(2):31-33. doi: 10.3321/j.issn:1005-023X.2005.02.009
    [21]
    栗晓龙. 金刚石表面镀覆层对金属结合剂金刚石工具性能影响 [D]. 郑州: 河南工业大学, 2018.

    LI Xiaolong. Effect of the coating layer on the diamond surface on the properties of metal bonded diamond tools [D]. Zhengzhou: Henan University of Technology, 2018.
    [22]
    刘婷婷. 金刚石颗粒的表面镀镍及其在固结磨料研磨中的应用[D]. 南京: 南京航空航天大学, 2014.

    LIU Tingting. Surface nickel plating of diamond particles and its application in fixed abrasive lapping [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
    [23]
    张一翔, 沈志刚. 磁控溅射金刚石微粉表面镀镍及其在电镀金刚石线锯上的应用 [J]. 中国粉体技术,2017,23(3):21-25. doi: 10.13732/j.issn.1008-5548.2017.03.004

    ZHANG Yixiang, SHEN Zhigang. Ni coating on surface of diamond microparticles by magnetron sputtering method for enhanced performance of diamond wire [J]. China Powder Science and Technology,2017,23(3):21-25. doi: 10.13732/j.issn.1008-5548.2017.03.004
    [24]
    栗晓龙, 肖长江, 栗正新. 金刚石镀镍和钛对其金属烧结制品强度的影响 [J]. 山东化工,2017,46(17):51-52. doi: 10.3969/j.issn.1008-021X.2017.17.020

    LI Xiaolong, XIAO Changjiang, LI Zhengxin. Study of diamond coated ni and ti influencing on strength of the metal powder sintering products [J]. Shandong Chemical Industry,2017,46(17):51-52. doi: 10.3969/j.issn.1008-021X.2017.17.020
    [25]
    方莉俐, 薛丽沙. 金刚石粒度对金刚石镀镍的影响 [J]. 电镀与涂饰,2015,34(23):1351-1354. doi: 10.3969/j.issn.1004-227X.2015.23.005

    FANG Lili, XUE Lisha. Effect of size of diamond particles on nickel plating of diamond [J]. Electroplating & Finishing,2015,34(23):1351-1354. doi: 10.3969/j.issn.1004-227X.2015.23.005
    [26]
    LI A , SHI L , ZHANG W, et al. A simple way to fabricate Ti6Al4V matrix composites reinforced by graphene with exceptional mechanical properties [J]. Materials Letters,2019,257:126750. doi: 10.1016/j.matlet.2019.126750
    [27]
    韩金江, 陈冰威, 路朋献, 等. 金刚石/铜(银、碳化钛)界面性质的第一性原理计算 [J]. 金刚石与磨料磨具工程,2022,42(5):535-542. doi: 10.13394/j.cnki.jgszz.2022.5002

    HAN Jinjiang, CHEN Bingwei, LU Pengxian, et al. First-principles calculations of diamond/copper (silver, titanium carbide) interface properties [J]. Diamond & Abrasives Engineering,2022,42(5):535-542. doi: 10.13394/j.cnki.jgszz.2022.5002
    [28]
    WEI C L, XU X , WEI B Z, et al. Titanium coating on the surface of diamond particles by a novel rapid low-temperature salt bath plating method [J]. Chemical Physics Letters,2020,761:138091. doi: 10.1016/j.cplett.2020.138091
    [29]
    武玺旺, 皇甫战彪, 刘雪坤, 等. 熔盐法合成Ti和TiC镀覆层对金刚石热稳定性的影响 [J]. 金刚石与磨料磨具工程,2023,43(2):196-201. doi: 10.13394/j.cnki.jgszz.2022.0054

    WU Xiwang, HUANGFU Zhanbiao, LIU Xuekun, et al. Effect of Ti and TiC coating on the thermal stability of diamond [J]. Diamond & Abrasives Engineering,2023,43(2):196-201. doi: 10.13394/j.cnki.jgszz.2022.0054
    [30]
    郭梦华, 张鹏, 栗正新, 等. 利用表面镀钛及掺杂氧化镧改善金刚石/铜复合材料性能的研究 [J/OL]. 中国稀土学报, 1-17 [2024-09-30]. http://kns.cnki.net/kcms/detail/11.2365.TG.20230627.1232.008.html.

    GUO Menghua, ZHANG Peng, LI Zhengxin, et al. Improving the properties of diamond/Cu composites by coating Titanium on diamond surface and doping La2O3[J/OL]. Journal of the Chinese Society of Rare Earths, 1-17[2024-09-30]. http://kns.cnki.net/kcms/detail/11.2365.TG.20230627.1232.008.html
    [31]
    SHA X H, YUE W, ZHANG H C, et al. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. Journal of Materials Science & Technology,2020,43(8):64-73. doi: 10.1016/j.jmst.2020.01.031
    [32]
    王树义, 肖冰, 肖皓中, 等. 镍基钎料真空钎焊镀钨金刚石的研究 [J]. 金刚石与磨料磨具工程,2023,43(2):202-209. doi: 10.13394/j.cnki.jgszz.2022.0134

    WANG Shuyi, XIAO Bing, XIAO Haozhong, et al. Research on vacuum brazing of W-coated diamond with Ni-based filler alloy [J]. Diamond & Abrasives Engineering,2023,43(2):202-209. doi: 10.13394/j.cnki.jgszz.2022.0134
    [33]
    李建伟, 张海龙, 张少明, 等. 金刚石表面镀钨对铜/金刚石复合材料热导率的影响 [J]. 功能材料,2016,47(1):1034-1037. doi: 10.3969/j.issn.1001-9731.2016.01.007

    LI Jianwei, ZHANG Hailong, ZHANG Shaoming, et al. On the thermal conductivity of Cu/diamond composite of diamond particles with tungsten coating [J]. Journal of Functional Materials,2016,47(1):1034-1037. doi: 10.3969/j.issn.1001-9731.2016.01.007
    [34]
    郭嘉鹏. 金刚石增强铜基复合材料的制备及性能研究 [D]. 兰州: 兰州理工大学, 2022.

    GUO Jiapeng. Preparation and properties of diamond reinforced copper matrix composites [D]. Lanzhou: Lanzhou University of Technology, 2022.
    [35]
    李文杰, 肖冰, 段端志, 等. 铜基预钎焊金刚石锯片的界面分析及其性能研究 [J]. 金刚石与磨料磨具工程,2014,34(2):44-47. doi: 10.13394/j.cnki.jgszz.2014.2.0010

    LI Wenjie, XIAO Bing, DUAN Duanzhi, et al. Interface analysis and performance evaluation of the Cu-based pre-brazed diamond saw blade [J]. Diamond & Abrasives Engineering,2014,34(2):44-47. doi: 10.13394/j.cnki.jgszz.2014.2.0010
    [36]
    DUAN D Z , XIAO B, WANG W, et al. Interface characteristics and performance of pre-brazed diamond grains with Ni–Cr composite alloy [J]. Journal of Alloys and Compounds,2015,644:626-631. doi: 10.1016/j.jallcom.2015.03.269
    [37]
    龙涛, 董应虎, 张瑞卿, 等. 金刚石表面金属化可控Cr层的形成机制及性能 [J]. 材料热处理学报,2015,36(1):132-137. doi: 10.13289/j.issn.1009-6264.2015.01.026

    LONG Tao, DONG Yinghu, ZHANG Ruiqing, et al. Formation mechanism and properties of controllable Cr layer on diamond surface by salt bath plating [J]. Transactions of Materials and Heat Treatment,2015,36(1):132-137. doi: 10.13289/j.issn.1009-6264.2015.01.026
    [38]
    张洪迪. 表面金属化金刚石/铜复合材料导热模型、界面结构与热变形行为研究 [D]. 上海: 上海交通大学, 2018.

    ZHANG Hongdi. Theoretical model of thermal conductivity, interfacial structure and hot deformation behavior of surface metallized diamond/copper composites [D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [39]
    谢吉, 甄春刚, 覃光明, 等. 金刚石镀覆及热处理在金刚石工具中的应用 [J]. 超硬材料工程,2020,32(3):1-7. doi: 10.3969/j.issn.1673-1433.2020.03.001

    XIE Ji, ZHEN Chungang, QIN Guangming, et al. Application of diamond coating and heat treatment on diamond tools [J]. Superhard Material Engineering,2020,32(3):1-7. doi: 10.3969/j.issn.1673-1433.2020.03.001
    [40]
    SHA X H, YUE W, ZHANG H C, et al. Thermal stability of polycrystalline diamond compact sintered with boron-coated diamond particles [J]. Diamond and Related Materials,2020,104:107753. doi: 10.1016/j.diamond.2020.107753
    [41]
    马洪兵, 白华, 薛晨, 等. 镀硼金刚石-金属基复合材料的制备及其性能研究 [J]. 硬质合金,2017,34(5):314-319. doi: 10.3969/j.issn.1003-7292.2017.05.004

    MA Hongbing, BAI Hua, XUE Cheng, et al. Research on preparation and properties of boron-coated diamond-metal matrix composite [J]. Cemented Carbides,2017,34(5):314-319. doi: 10.3969/j.issn.1003-7292.2017.05.004
    [42]
    SUN Y, MENG Q, QIAN M,et al. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles [J]. Scientific Reports,2016(6):20198. doi: 10.1038/srep20198
    [43]
    MENG D, YAN G, YUE W, et al. Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond [J]. Journal of the European Ceramic Society,2018,38(13):4338-4345. doi: 10.1016/j.jeurceramsoc.2018.05.017
    [44]
    LU J, WANG Y H , QI X H , et al. Structure and characteristics of Si-coated diamond grits [J]. 金刚石与磨料磨具工程,2005(6):13-15. doi: 10.13394/j.cnki.jgszz.2005.06.004
    [45]
    ZHU C X , WANG C , LANG J, et al. Si-coated diamond particles reinforced copper composites fabricated by spark plasma sintering process [J]. Materials and Manufacturing Processes,2013,28(1/2/3):143-147. doi: 10.1080/10426914.2012.746789
    [46]
    高先哲, 肖冰, 管海军, 等. Cu-Sn-Ti钎料的改性设计及性能分析 [J]. 金刚石与磨料磨具工程,2018,38(1):32-36,40. doi: 10.13394/j.cnki.jgszz.2018.1.0005

    GAO Xianzhe, XIAO Bing, GUAN Haijun, et al. Modification design and performance analysis of Cu-Sn-Ti solder [J]. Diamond & Abrasives Engineering,2018,38(1):32-36,40. doi: 10.13394/j.cnki.jgszz.2018.1.0005
    [47]
    SI S H , DING Z C , ZUO R Z , et al. Adding Hf element to improve the strength and wear resistance of diamond brazed with Ni-based boron-free brazing filler metal [J]. Diamond and Related Materials,2022,121:108723. doi: 10.1016/j.diamond.2021.108723
    [48]
    CUI B, WANG P B, ZHAO W X, et al. Adding Zr element to improve the strength and mechanical properties of diamond vacuum-brazed with Ni-Cr boron-free filler alloy [J]. Diamond and Related Materials,2023,133:109722. doi: 10.1016/j.diamond.2023.109722
    [49]
    李力, 李小强, 胡可, 等. 真空钎焊TiAl基合金用Ti-Zr-Cu-Ni-Co-Mo钎料的钎焊性能 [J]. 中国有色金属学报(英文版),2019,29(4):754-763. doi: 10.1016/S1003-6326(19)64985-X

    LI Li, LI Xiaoqiang, HU Ke, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy [J]. Transactions of Nonferrous Metals Society of China,2019,29(4):754-763. doi: 10.1016/S1003-6326(19)64985-X
    [50]
    马伯江, 王镇, 王超. 非晶Ni基合金感应钎焊微粉金刚石的研究 [J]. 硬质合金,2020,37(6):417-422. doi: 10.3969/j.issn.1003-7292.2020.06.002

    MA Bojiang, WANG Zhen, WANG Chao. Study on induction brazing of micro-powder diamond with an amorphous ni-based alloy [J]. Cemented Carbide,2020,37(6):417-422. doi: 10.3969/j.issn.1003-7292.2020.06.002
    [51]
    王超. 非晶Ni基合金阻焊金刚石磨粒的研究 [D]. 青岛: 青岛科技大学, 2022.

    WANG Chao. Research on resistance welding of diamond grits using amorphous nickel-based alloys [D]. Qingdao: Qingdao University of Science Technology. 2022.
    [52]
    DING W F , XU J H,CHEN Z Z, et al. A study on effects of TiB2 contents on reactive products and compressive strength of brazed CBN grains [J]. Surface and Interface Analysis,2009,41:238-243. doi: 10.1002/sia.3013
    [53]
    YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021,112:108239. doi: 10.1016/j.diamond.2021.108239
    [54]
    尹孝辉, 徐凡, 徐东, 等. 添加ZrC增强相的Cu-Sn-Ti钎料真空钎焊金刚石的微观结构和磨削性能的研究 [J]. 机械工程学报,2021,57(18):182-189. doi: 10.3901/JME.2021.18.182

    YIN Xiaohui, XU Fan, XU Dong, et al. Research on microstructure and grinding performance of vacuum brazed diamond with zrc reinforced cu-sn-ti composite alloys [J]. Journal of mechanical engineering,2021,57(18):182-189. doi: 10.3901/JME.2021.18.182
    [55]
    ZHAO J, GUO M, HU S P, et al. Brazing of large synthetic diamond grits using graphene nanoplatelets reinforced Ni-Cr composite fillers [J]. Diamond and Related Materials,2020,109:108004. doi: 10.1016/j.diamond.2020.108004
    [56]
    郭民. 石墨烯增强Ni-Cr复合钎料钎焊金刚石工艺及机理研究 [D].上海: 上海工程技术大学, 2021.

    GUO Min. Research on process and mechanism of diamond brazing with gnps-reinforced ni-cr composite filler [D]. Shanghai: Shanghai University of Engineering Science, 2021.
    [57]
    杨理清, 骆颖, 罗文来. 烧结保温时间对金刚石工具产品性能的影响 [J]. 超硬材料工程,2016,28(6):10-14. doi: 10.3969/j.issn.1673-1433.2016.06.004

    YANG Liqing, LUO Ying, LUO Wenlai. The influence of sintering holding time on the performance of diamond tools product [J]. Superhard Material Engineering,2016,28(6):10-14. doi: 10.3969/j.issn.1673-1433.2016.06.004
    [58]
    甄春刚, 覃光明, 谢吉, 等. 预烧结对钴基胎体性能的影响 [J]. 超硬材料工程,2019,31(5):33-36. doi: 10.3969/j.issn.1673-1433.2019.05.008

    ZHEN Chungang, QIN Guangming, XIE Ji, et al. Effect of pre-sintered process on the properties of Co-based matrix [J]. Superhard Material Engineering,2019,31(5):33-36. doi: 10.3969/j.issn.1673-1433.2019.05.008
    [59]
    YANG L, HONG F D, WEN S L. Effects of sintering temperature on the properties of Cu-Co-based alloys matrix [J]. Advanced Materials Research,2011,1169(201/202/203):1757-1762. doi: 10.4028/www.scientific.net/AMR.201-203.1757
    [60]
    徐强, 刘一波, 杨志威. 热压烧结工艺参数对金刚石工具胎体力学性能的影响 [J]. 超硬材料工程,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002

    XU Qiang, LIU Yibo, YANG Zhiwei. Influence of hot press sintering technical parameters on mechanical properties of diamond tools matrix [J]. Superhard Material Engineering,2020,32(6):9-14. doi: 10.3969/j.issn.1673-1433.2020.06.002
    [61]
    郭洪凯. 金刚石工具用高熵合金结合剂的研究 [D]. 秦皇岛: 燕山大学, 2016.

    GUO Hongkai. Research for the high entropyalloys bond of diamond abrasive tools [D]. Qinhuangdao: Yanshan University, 2016.
    [62]
    张毓隽, 童震松, 沈卓身. SPS工艺对铜/金刚石复合材料性能的影响 [J]. 电子元件与材料,2009,28(10):37-40. doi: 10.3969/j.issn.1001-2028.2009.10.012

    ZHANG Yujun, TONG Zhensong, SHEN Zhuoshen. Effect of spark plasma sintering process on the properties of Cu/diamond composite material [J]. Electronic Components and Materials,2009,28(10):37-40. doi: 10.3969/j.issn.1001-2028.2009.10.012
    [63]
    武美玲, 尹育航, 丁冬海, 等. 自蔓延高温合成法制备金刚石工具材料研究现状 [J]. 材料热处理学报,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500

    WU Meiling, YIN Yuhang, DING Donghai, et al. Research status of diamond tool materials prepared by self-propagating high-temperature synthesis [J]. Transactions of Materials and Heat Treatment,2023,44(5):1-15. doi: 10.13289/j.issn.1009-6264.2022-0500
    [64]
    PENG J W, ZHANG F L, HUANG Y J, et al. Preparation a nickel-aluminide bonded diamond tool by self-propagating high-temperature synthesis and strengthening by nickel-chromium-phosphorus alloy and copper [J]. International Journal of Refractory Metals and Hard Materials,2019,82:100-109. doi: 10.1016/j.ijrmhm.2019.04.002
    [65]
    吴益雄, 陈欣宏, 彭家万, 等. 基于Fe-Al自蔓延反应的金刚石工具制备及性能研究 [J]. 超硬材料工程,2021,33(2):1-6. doi: 10.3969/j.issn.1673-1433.2021.02.001

    WU Yixiong, CHEN Xinhong, PENG Jiawan, et al. Study on preparation and performance of diamond tools based on Fe-Al self-propagating reaction [J]. Superhard Material Engineering,2021,33(2):1-6. doi: 10.3969/j.issn.1673-1433.2021.02.001
    [66]
    王光祖, 方占江. 钎焊金刚石工具的研究综述 [J]. 超硬材料工程,2022,34(1):32-36. doi: 10.3969/j.issn.1673-1433.2022.01.007

    WANG Guangzu, FANG Zhanjiang. Review of research progress on brazed diamond tools [J]. Superhard Material Engineering,2022,34(1):32-36. doi: 10.3969/j.issn.1673-1433.2022.01.007
    [67]
    吴其亮, 于爱兵, 孙磊, 等. 聚晶金刚石与高速钢的真空钎焊工艺研究 [J]. 材料保护,2021,54(7):112-116,121. doi: 10.16577/j.cnki.42-1215/tb.2021.07.020

    WU Qiliang, YU Aibing, SUN Lei, et al. Study on vacuum brazing technology of polycrystalline diamond and high speed steel [J]. Materials Protection,2021,54(7):112-116,121. doi: 10.16577/j.cnki.42-1215/tb.2021.07.020
    [68]
    王志军. 激光钎焊金刚石颗粒界面结合特征及磨损性能研究 [D]. 长沙: 长沙理工大学, 2020.

    WANG Zhijun. Research on interfacial bonding characteristics and wear properties of laser brazed diamond particles [D]. Changsha: Changsha University of Science & Technology, 2020.
    [69]
    姚鹏, 余旭东, 钟素娟, 等. 细粒度金刚石/45钢基体的激光钎焊工艺研究 [J]. 超硬材料工程,2020,32(5):13-17. doi: 10.3969/j.issn.1673-1433.2020.05.004

    YAO Peng, YU Xudong, ZHONG Sujuan, et al. Study on brazing fine-grained diamonds onto 45 steel by laser heating [J]. Superhard Material Engineering,2020,32(5):13-17. doi: 10.3969/j.issn.1673-1433.2020.05.004
    [70]
    张俊涛, 黄淼俊, 胡子健, 等. 选区激光熔化制备金刚石/TC4复合材料的成型工艺及性能分析 [J]. 机电信息,2021(15):46-49. doi: 10.3969/j.issn.1671-0797.2021.15.019

    ZHANG Juntao, HUANG Miaojun, HU Zijian, et al. Forming process and performance analysis of diamond/TC4 composite materials prepared by selective laser melting [J]. Mechanical and Electrical Information,2021(15):46-49. doi: 10.3969/j.issn.1671-0797.2021.15.019
    [71]
    张绍和, 苏舟, 刘磊磊, 等. SLS和FDMS制造超薄金刚石锯片对比研究 [J]. 金刚石与磨料磨具工程,2021,41(1):38-43. doi: 10.13394/j.cnki.jgszz.2021.1.0007

    ZHANG Shaohe, SU Zhou, LIU Leilei, et al. Comparative study on ultra-thin diamond saw blades made by SLS and FDMS [J]. Diamond & Abrasives Engineering,2021,41(1):38-43. doi: 10.13394/j.cnki.jgszz.2021.1.0007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (813) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return