Citation: | WANG Libo, XIAN Chao, XIN Hongmin. Temperature simulation and experimental for polishing TC4 with abrasive cloth wheel[J]. Diamond & Abrasives Engineering, 2025, 45(3): 396-407. doi: 10.13394/j.cnki.jgszz.2024.0019 |
[1] |
JAEGER J C. Moving sources of heat and the temperature at sliding contacts [J]. Journal and Proceedings of the Royal Society of New South Wales,1943,76(3):203-224. doi: 10.5962/p.360338
|
[2] |
贝季瑶. 磨削温度的分析与研究 [J]. 上海交通大学学报,1964(3):55-71. doi: 10.16183/j.cnki.jsjtu.1964.03.005
BEI Jiyao. Analysis and research on grinding temperature [J]. Journal of Shanghai Jiao Tong University,1964(3):55-71. doi: 10.16183/j.cnki.jsjtu.1964.03.005
|
[3] |
张磊. 单程平面磨削淬硬技术的理论分析和试验研究 [D]. 济南: 山东大学, 2006.
ZHANG Lei. Theoretical analysis and experimental study on hardening technology of single-pass plane grinding [D]. Jinan: Shandong University, 2006.
|
[4] |
金滩. 高效深切磨削技术的基础研究[D]. 沈阳: 东北大学, 1999.
JIN Tan. Fundamental research on high efficiency deep grinding technology [D]. Shenyang: Northeastern University, 1999.
|
[5] |
JIN T, CAI G Q. Analytical thermal models of oblique moving heat source for deep grinding and cutting [J]. Journal of Manufacturing Science and Engineering,2001,123(2):185-190. doi: 10.1115/1.1343458
|
[6] |
JIN T, ROWE W B, MCCORMACK D. Temperatures in deep grinding of finite workpieces [J]. International Journal of Machine Tools and Manufacture,2002,42(1):53-59. doi: 10.1016/S0890-6955(01)00094-3
|
[7] |
LIU M Z, LI C H, ZHANG Y B, et al. Analysis of grain tribology and improved grinding temperature model based on discrete heat source [J]. Tribology International,2023,180:108196. doi: 10.1016/j.triboint.2022.108196
|
[8] |
YANG S Y, CHEN W F, NONG S, et al. Temperature field modelling in the form grinding of involute gear based on high-order function moving heat source [J]. Journal of Manufacturing Processes,2022,81:1028-1039. doi: 10.1016/j.jmapro.2022.07.014
|
[9] |
GRIMMERT A, PACHNEK F, WIEDERKEHR P. Temperature modeling of creep-feed grinding processes for nickel-based superalloys with variable heat flux distribution [J]. CIRP Journal of Manufacturing Science and Technology,2023,41:477-489. doi: 10.1016/j.cirpj.2023.01.011
|
[10] |
LAN S L, JIAO F. Modeling of heat source in grinding zone and numerical simulation for grinding temperature field [J]. The International Journal of Advanced Manufacturing Technology,2019,103(5):3077-3086. doi: 10.1007/s00170-019-03662-w
|
[11] |
蒋培军. 基于温度匹配法的平面磨削3D有限元仿真及试验 [J]. 金刚石与磨料磨具工程,2020,40(5):96-101. doi: 10.13394/j.cnki.jgszz.2020.05.0017
JIANG Peijun. Three dimensional simulation and experiment of plane grinding temperature field based on temperature matching method [J]. Diamond & Abrasives Engineering,2020,40(5):96-101. doi: 10.13394/j.cnki.jgszz.2020.05.0017
|
[12] |
张宇. cBN砂轮对GCr15钢的磨削硬化试验与仿真研究[D]. 太原: 太原理工大学, 2020.
ZHANG Yu. The experimental study and simulation ongrind-hardening of GCr15 steel by cBN grinding wheel [D]. Taiyuan: Taiyuan University of Technology, 2020.
|
[13] |
王长清, 郑子琦, 郑勇, 等. 磨粒形状对轴类零件磨削温度影响的仿真分析 [J]. 组合机床与自动化加工技术,2022(3):141-144. doi: 10.13462/j.cnki.mmtamt.2022.03.034
WANG Changqing, ZHENG Ziqi, ZHENG Yong, et al. Simulation analysis of influence of abrasive shape on grinding temperature of shaft part [J]. Modular Machine Tool & Automatic Manufacturing Technique,2022(3):141-144. doi: 10.13462/j.cnki.mmtamt.2022.03.034
|
[14] |
孙为钊. 基于有限元和卷积神经网络的磨削温度理论分析及数值仿真 [D]. 上海: 上海工程技术大学, 2020.
SUN Weizhao. Theoretical analysis and numerical simulation of grinding temperature based on finite element and convolutional neural network [D]. Shanghai: Shanghai University of Engineering Science, 2020.
|
[15] |
YANG M, LI C H, ZHANG Y B, et al. Research on microscale skull grinding temperature field under different cooling conditions [J]. Applied Thermal Engineering,2017,126:525-537. doi: 10.1016/j.applthermaleng.2017.07.183
|
[16] |
HANDA D, KUMAR S, SURENDRAN S B T, et al. Simulation of intermittent grinding for Ti-6Al-4V with segmented wheel [J]. Materials Today: Proceedings,2021,44:2537-2542. doi: 10.1016/j.matpr.2020.12.626
|
[17] |
尹国强, 巩亚东, 李宥玮, 等. 新型点磨削砂轮磨削温度仿真实验 [J]. 东北大学学报(自然科学版),2019,40(3):392-397. doi: 10.12068/j.issn.1005-3026.2019.03.017
YIN Guoqiang, GONG Yadong, LI Youwei, et al. Simulation experiment of grinding temperature for novel point grinding wheel [J]. Journal of Northeastern University (Natural Science),2019,40(3):392-397. doi: 10.12068/j.issn.1005-3026.2019.03.017
|
[18] |
李厦, 王锴霖. 超声振动辅助缓进给磨削温度场仿真与试验分析 [J]. 表面技术,2018,47(7):265-269. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.040
LI Sha, WANG Kailin. Simulation and experimental analysis of ultrasonic vibration assisted creep feed grinding temperature field [J]. Surface Technology,2018,47(7):265-269. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.040
|
[19] |
朱贵升. 切向超声辅助磨削热力耦合特性研究[D]. 天津: 天津科技大学, 2022.
ZHU Guisheng. Study on thermal-mechanical couplingcharaceristics of tangential ultrasonicssisted grinding [D]. Tianjin: Tianjin University of Science and Technology, 2022.
|
[20] |
王晓旭. TC4钛合金纵扭超声磨削CBN砂轮磨损机理及其试验研究 [D]. 焦作: 河南理工大学, 2022.
WANG Xiaoxu. Wear mechanism and experimental study of CBN grinding wheel in longitudinal and torsional ultrasonic grinding of TC4 titanium alloy [D]. Jiaozuo: Henan Polytechnic University, 2022.
|
[21] |
BABBAR A, JAIN V, GUPTA D, et al. Finite element simulation and integration of CEM43 ℃ and Arrhenius models for ultrasonic-assisted skull bone grinding: A thermal dose model [J]. Medical Engineering & Physics,2021,90:9-22. doi: 10.1016/j.medengphy.2021.01.008
|
[22] |
王晨晨. 骨骼磨削温度的仿真预测及实验研究 [D]. 青岛: 山东科技大学, 2021.
WANG Chenchen. Research on the prediction based on simulation results and experimental of bone grinding temperature [D]. Qingdao: Shandong University of Science and Technology, 2021.
|
[23] |
WAN L L, LI L, DENG Z H, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics [J]. Journal of Manufacturing Processes,2019,47:41-51. doi: 10.1016/j.jmapro.2019.09.024
|
[24] |
李征, 丁文锋, 周欢, 等. 基于混合材料模型的颗粒增强钛基复材高速磨削温度研究 [J]. 机械工程学报,2019,55(21):186-198. doi: 10.3901/JME.2019.21.186
LI Zheng, DING Wenfeng, ZHOU Huan, et al. Grinding temperature of particulate reinforced titanium matrix composites in high-speed grinding based on multi-material model [J]. Journal of Mechanical Engineering,2019,55(21):186-198. doi: 10.3901/JME.2019.21.186
|
[25] |
刘军, 范宝朋, 陈燕, 等. 超声振动磨削CFRP温度场的有限元仿真 [J]. 机械科学与技术,2020,39(6):821-828. doi: 10.13433/j.cnki.1003-8728.20190217
LIU Jun, FAN Baopeng, CHEN Yan, et al. FEM simulation of temperature field in ultrasonic vibration grinding of CFRP [J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(6):821-828. doi: 10.13433/j.cnki.1003-8728.20190217
|
[26] |
SU J X, KE Q X, DENG X Z, et al. Numerical simulation and experimental analysis of temperature field of gear form grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,97(5):2351-2367. doi: 10.1007/s00170-018-2079-6
|
[27] |
GUO H, WANG X Y, ZHAO N, et al. Simulation analysis and experiment of instantaneous temperature field for grinding face gear with a grinding worm [J]. The International Journal of Advanced Manufacturing Technology,2022,120(7):4989-5001. doi: 10.1007/s00170-022-09036-z
|
[28] |
GUO Z F, YI J, HU X P, et al. Heat flux distribution model and transient temperature field analysis in grinding of helical raceway [J]. The International Journal of Advanced Manufacturing Technology,2022,121(9):6497-6506. doi: 10.1007/s00170-022-09736-6
|
[29] |
胡浩. 镍基高温合金螺纹成形磨削温度场仿真与实验研究[D]. 长沙: 湖南大学, 2022.
HU Hao. Simulation and experimental study of temperature field in thread forming grinding of nickel-based superalloy [D]. Changsha: Hunan University, 2022.
|
[30] |
KUANG W J, MIAO Q, DING W F, et al. Residual stresses of turbine blade root produced by creep-feed profile grinding: Three-dimensional simulation based on workpiece–grain interaction and experimental verification [J]. Journal of Manufacturing Processes,2021,62:67-79. doi: 10.1016/j.jmapro.2020.11.045
|
[31] |
CHEN H, ZHAO J, DAI Y X, et al. Simulation of 3D grinding temperature field by using an improved finite difference method [J]. The International Journal of Advanced Manufacturing Technology,2020,108(11):3871-3884. doi: 10.1007/s00170-020-05513-5
|
[32] |
王崇. 工程陶瓷高速磨削温度的有限元仿真分析 [D]. 长沙: 湖南大学, 2021.
WANG Chong. Finite element simulation analysis of high-speed grinding temperature of engineering ceramics [D]. Changsha: Hunan University, 2021.
|
[33] |
赵玲刚. 氮化硅陶瓷磨削温度与表面变质层的仿真与实验 [J]. 机械与电子,2021,39(10):9-14. doi: 10.3969/j.issn.1001-2257.2021.10.002
ZHAO Linggang. Simulation and experiment of grinding temperature and surface modification layer of silicon nitride ceramics [J]. Machinery & Electronics,2021,39(10):9-14. doi: 10.3969/j.issn.1001-2257.2021.10.002
|
[34] |
陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010.
LU Zifeng. Calibration and the measurement error analysis of infrared imaging system for temperature measurement [D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optical Precision Machinery and Physics), 2010.
|
[35] |
任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011.
REN Jingxin, HUA Dingan. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011.
|
[36] |
ROWE W B, BLACK S C E, MILLS B, et al. Grinding temperatures and energy partitioning [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences,1997,453(1960):1083-1104. doi: 10.1098/rspa.1997.0061
|
[37] |
鲜超, 史耀耀, 蔺小军, 等. 百叶轮抛光TC4的接触弧长试验研究 [J]. 计算机集成制造系统,2020,26(5):1218-1232. doi: 10.13196/j.cims.2020.05.008
XIAN Chao, SHI Yaoyao, LIN Xiaojun, et al. Experimental study on contact arc length of polishing TC4 with abrasive cloth wheel [J]. Computer Integrated Manufacturing Systems,2020,26(5):1218-1232. doi: 10.13196/j.cims.2020.05.008
|
[38] |
宝鸡旭隆有色金属有限公司. 钛合金TC4性能介绍[EB/OL]. (2022-12-07)[2024-04-18]. https://www.sxxlti.com/titanium-rods/194.html.
Baoji Xulong Nonferrous Metals Co., Ltd. Introduction to the performance of titanium alloy TC4 [EB/OL]. (2022-12-07)[2024-04-18]. https://www.sxxlti.com/titanium-rods/194.html.
|