Citation: | ZHANG Jiayu, MENG Erchao, SUN Jianlin, JI Jianzhong. Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070 |
[1] |
CHEN X F, YANG X L, XIE X J, et al. Research progress of large size SiC single crystal materials and devices [J]. Light, Science & Applications, 2023, 12(1): 28. doi: 10.1038/s41377-022-01037-7
|
[2] |
WANG J L. Recent research progress in preparation and application of silicon carbide [J]. Open Journal of Natural Science, 2022, 10: 220-226. doi: 10.12677/OJNS.2022.103028
|
[3] |
WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers [J]. Advanced Materials Interfaces, 2023, 10(13): 2202369. doi: 10.1002/admi.202202369
|
[4] |
TSAI M Y, WANG S M, TSAI C C, et al. Investigation of increased removal rate during polishing of single-crystal silicon carbide [J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1511-1520. doi: 10.1007/s00170-015-7023-4
|
[5] |
HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies: Micromachines [J]. Micromachines, 2022, 13(10): 1752. doi: 10.3390/mi13101752
|
[6] |
ZHANG Q X, PAN J S, ZHANG X W, et al. Tribological behavior of 6H–SiC wafers in different chemical mechanical polishing slurries [J]. Wear, 2021, 472 / 473: 203649. doi: 10.1016/j.wear.2021.203649
|
[7] |
路家斌, 曹纪阳, 邓家云, 等. Fe3O4特性对单晶SiC固相芬顿反应研磨丸片性能的影响 [J]. 金刚石与磨料磨具工程, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008
LU Jiabin, CAO Jiyang, DENG Jiayun, et al. Effect of Fe3O4 characteristics on properties of solid-phase Fenton reaction lapping pellets for single-crystal SiC [J]. Diamond & Abrasives Engineering, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008
|
[8] |
GAO B, GUO D, ZHANG X, et al. Picosecond laser-assisted chemical mechanical polishing (CMP): Aiming at the Si-face of single-crystal 6H-SiC wafer [J]. ECS Journal of Solid State Science and Technology, 2021, 10(4): 044008. doi: 10.1149/2162-8777/abf726
|
[9] |
XIE X Z, PENG Q F, CHEN G P, et al. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process [J]. Ceramics International, 2021, 47(10, Part A): 13322-13330. doi: 10.1016/j.ceramint.2021.01.188
|
[10] |
路家斌, 熊强, 阎秋生, 等. 6H-SiC单晶紫外光催化抛光中光照方式和磨料的影响 [J]. 金刚石与磨料磨具工程, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006
LU Jiabin, XIONG Qiang, YAN Qiusheng, et al. Effects of lights modes and abrasives on UV-photocatalysis assisted polishing of 6H-SiC single crystal [J]. Diamond & Abrasives Engineering, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006
|
[11] |
GAO B, ZHAI W J, ZHAI Q, et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency [J]. ECS Journal of Solid State Science and Technology, 2019, 8(11): 677-684. doi: 10.1149/2.0031911jss
|
[12] |
LUO Y R, XIONG Q, LU J B, et al. Chemical mechanical polishing exploiting metal electrochemical corrosion of single-crystal SiC [J]. Materials Science in Semiconductor Processing, 2022, 152: 107067. doi: 10.1016/j.mssp.2022.107067
|
[13] |
王磊, 吴润泽, 牛林, 等. 碳化硅晶体电化学机械抛光工艺研究 [J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
WANG Lei, WU Runze, NIU Lin, et al. Study on electrochemical mechanical polishing process of silicon carbide crystal [J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
|
[14] |
YANG X Z, YANG X, GU H Y, et al. Efficient and slurryless ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers [J]. Ceramics International, 2022, 48(6): 7570-7583. doi: 10.1016/j.ceramint.2021.11.301
|
[15] |
YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface [J]. Electrochemistry Communi-cations, 2019, 100: 1-5. doi: 10.1016/j.elecom.2019.01.012
|
[16] |
WU Y S, PAN J S, WANG H, et al. Study of corrosion rate control mechanism based on magnetorheological electro-Fenton composite polishing of single-crystal GaN wafers [J]. Journal of Solid State Electrochemistry, 2023, 27(8): 2163-2176. doi: 10.1007/s10008-023-05468-z
|
[17] |
DENG J Y, LU J B, YAN Q S, et al. Preparation and polishing properties of water-based magnetorheological chemical finishing fluid with high catalytic activity for single-crystal SiC [J]. Journal of Intelligent Material Systems and Structures, 2020, 32(13): 1441-1451. doi: 10.1177/1045389X20975503
|
[18] |
梁华卓, 付有志, 何俊峰, 等. 单晶SiC基片的磁流变化学复合抛光 [J]. 金刚石与磨料磨具工程, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
LIANG Huazhuo, FU Youzhi, HE Junfeng, et al. Magnetorheological chemical compound polishing of single crystal SiC substrate [J]. Diamond & Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
|
[19] |
HU D, LI H L, LU J B, et al. Study on heterogeneous Fenton reaction parameters for polishing single-crystal SiC using magnetorheological elastomers polishing pads [J]. Smart Materials and Structures, 2023, 32(2): 025003. doi: 10.1088/1361-665X/acacd8
|
[20] |
GAO B, ZHAI W J, ZHAI Q, et al. Novel photoelectrochemically combined mechanical polishing technology for scratch-free 4H-SiC surface by using CeO2-TiO2 composite photocatalysts and PS / CeO2 core / shell abrasives [J]. Applied Surface Science, 2021, 570: 151141. doi: 10.1016/j.apsusc.2021.151141
|
[21] |
SHI X D, LU Y Q, CHAUSSENDE D, et al. Wet-oxidation-assisted chemical mechanical polishing and high-temperature thermal annealing for low-loss 4H-SiC integrated photonic devices [J]. Materials, 2023, 16(6): 2324. doi: 10.3390/ma16062324
|
[22] |
张晨. SiC单晶超声辅助电解液等离子体抛光仿真及实验研究 [D]. 西安: 西安理工大学, 2023.
ZHANG Chen. Simulation and experimental study on ultrasonic-assisted electrolyte plasma polishing of SiC single crystal [D]. Xi'an: Xi'an University of Technology, 2023.
|
[23] |
何艳, 苑泽伟, 段振云, 等. 单晶SiC的电助光催化抛光及去除机理 [J]. 中国机械工程, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005
HE Yan, YUAN Zewei, DUAN Zhenyun, et al. Electrical enhanced photocatalysis polishing and removal mechanism for single crystal SiC [J]. China Mechanical Engineering, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005
|
[24] |
TSAI M Y, HOO Z T. Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO2 slurries [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1519-1530. doi: 10.1007/s00170-019-04223-x
|
[25] |
WANG W T, ZHANG B G, SHI Y H, et al. Improved chemical mechanical polishing performance in 4H-SiC substrate by combining novel mixed abrasive slurry and photocatalytic effect [J]. Applied Surface Science, 2022, 575: 151676. doi: 10.1016/j.apsusc.2021.151676
|
[26] |
TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566-5568. doi: 10.1103/PhysRevB.39.5566
|
[27] |
WANG J, LU C, WANG Q, et al. Understanding large plastic deformation of SiC nanowires at room temperature [J]. EPL(Europhysics Letters), 2011, 95(6): 63003-1-63003-5. doi: 10.1209/0295-5075/95/63003
|
[28] |
JIN E Z, DU S Y, LI M, et al. Influence of helium atoms on the shear behavior of the fiber / matrix interphase of SiC / SiC composite [J]. Journal of Nuclear Materials, 2016, 479: 504-514. doi: 10.1016/j.jnucmat.2016.07.041
|
[29] |
LIN K X, ZENG M, CHEN H M, et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites [J]. International Journal of Mechanical Sciences, 2022, 231: 107580. doi: 10.1016/j.ijmecsci.2022.107580
|
[30] |
DEVANATHAN R, RUBIA T D D L, WEBER W J. Displacement threshold energies in β-SiC [J]. Journal of Nuclear Materials, 1998, 253(1/2/3): 47-52. doi: 10.1016/S0022-3115(97)00304-8
|
[31] |
BRENNER D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990, 42(15): 9458-9471. doi: 10.1103/PhysRevB.42.9458
|
[32] |
LI W H, YAO X H. The spallation of single crystal SiC: The effects of shock pulse duration [J]. Computational Materials Science, 2016, 124: 151-159. doi: 10.1016/j.commatsci.2016.07.028
|
[33] |
VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: A molecular-dynamics study of structural correlations [J]. Physical Review B, 1990, 41(17): 12197-12209. doi: 10.1103/PhysRevB.41.12197
|
[34] |
VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide [J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
|
[35] |
SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions [J]. NPJ Computational Materials, 2016, 2(1): 15011. doi: 10.1038/npjcompumats.2015.11
|
[36] |
NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I [J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. doi: 10.1021/jp306391p
|
[37] |
DONG X Y, SHIN Y C. Predictions of thermal conductivity and degradation of irradiated SiC / SiC composites by materials-genome-based multiscale modeling [J]. Journal of Nuclear Materials, 2018, 512: 268-275. doi: 10.1016/j.jnucmat.2018.10.021
|
[38] |
NIU X M, BIAN J, CHEN X H, et al. Molecular dynamics simulation on PyC interfacial failure mechanism and shear strength of SiC / SiC composites [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(8): 85008. doi: 10.1088/1361-651X/ac2478
|
[39] |
WANG H X, GAO S, KANG R K, et al. Mechanical load-induced atomic-scale deformation evolution and mechanism of SiC polytypes using molecular dynamics simulation [J]. Nanomaterials, 2022, 12(14): 2489. doi: 10.3390/nano12142489
|
[40] |
WANG R Q, HAN J B, MAO J X, et al. A molecular dynamics based cohesive zone model for interface failure under monotonic tension of 3D four direction SiCf / SiC composites [J]. Composite Structures, 2021, 274: 114397. doi: 10.1016/j.compstruct.2021.114397
|
[41] |
AI T C, LIU J, QIU H J, et al. Removal behavior and performance analysis of defective silicon carbide in nano-grinding [J]. Precision Engineering, 2021, 72: 858-869. doi: 10.1016/j.precisioneng.2021.07.011
|
[42] |
涂睿, 李盈盈, 孔淑妍, 等. 分子动力学模拟辐照对碳化硅裂纹扩展过程的影响 [J]. 材料科学与工程学报, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003
TU Rui, LI Yingying, KONG Shuyan, et al. Molecular dynamics simulation of lrradiation effects on the crackpropagation in 3C-SiC [J]. Journal of Materials Science and Engineering, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003
|
[43] |
WALLACE J, CHEN D, WANG J, et al. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC / graphite interface [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 307: 81-85. doi: 10.1016/j.nimb.2013.02.036
|
[44] |
LI Y Y, XIAO W, LI H L. Molecular dynamics simulation of C / Si ratio effect on the irradiation swelling of β-SiC [J]. Journal of Nuclear Materials, 2016, 480: 75-79. doi: 10.1016/j.jnucmat.2016.08.004
|
[45] |
KANG Q, FANG X D, WU C, et al. Mechanical properties and indentation-induced phase transformation in 4H–SiC implanted by hydrogen ions [J]. Ceramics International, 2022, 48(11): 15334-15347. doi: 10.1016/j.ceramint.2022.02.067
|
[46] |
LI Y Y, LI Y, XIAO W. Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations [J]. Nuclear Engineering and Technology, 2019, 51(3): 769-775. doi: 10.1016/j.net.2018.12.010
|
[47] |
WU W L, HU Y, MENG X S, et al. Molecular dynamics simulation of ion-implanted single-crystal 3C-SiC nano-indentation [J]. Journal of Manufacturing Processes, 2022, 79: 356-368. doi: 10.1016/j.jmapro.2022.04.071
|
[48] |
LIU B, LI X L, KONG R J, et al. A numerical analysis of ductile deformation during nanocutting of silicon carbide via molecular dynamics simulation [J]. Materials, 2022, 15(6): 2325. doi: 10.3390/ma15062325
|
[49] |
KHAN T A, BURR P A, PAYNE D, et al. Molecular dynamic simulation on temperature evolution of SiC under directional microwave radiation [J]. Journal of Physics: Condensed Matter, 2022, 34(19): 195701. doi: 10.1088/1361-648X/ac553c
|
[50] |
CHEN W, LI L S. The study of the optical phonon frequency of 3C-SiC by molecular dynamics simulations with deep neural network potential [J]. Journal of Applied Physics, 2021, 129(24): 244104. doi: 10.1063/5.0049464
|
[51] |
UTKIN A V, FOMIN V M. Molecular dynamics study of silicon carbide properties under external dynamic loading [J]. AIP Conference Proceedings, 2017, 1983(1): 30018. doi: 10.1063/1.5007476
|
[52] |
TRANH D T N, HOANG V V, HANH T T T. Modeling glassy SiC nanoribbon by rapidly cooling from the liquid: An affirmation of appropriate potentials [J]. Physica B: Condensed Matter, 2021, 608: 412746. doi: 10.1016/j.physb.2020.412746
|
[53] |
FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading [J]. Mechanics of Materials, 2022, 164: 104139. doi: 10.1016/j.mechmat.2021.104139
|
[54] |
DO T T, FANG T H. Deep insights into interaction behaviour and material removal of β-SiC wafer in nanoscale polishing [J]. Tribology International, 2023, 186: 108639. doi: 10.1016/j.triboint.2023.108639
|
[55] |
BIAN Z T, GAO T H, GAO Y, et al. Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations [J]. Diamond and Related Materials, 2022, 129: 109368. doi: 10.1016/j.diamond.2022.109368
|
[56] |
GAO S, WANG H X, HUANG H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. International Journal of Mechanical Sciences, 2023, 247: 108147. doi: 10.1016/j.ijmecsci.2023.108147
|
[57] |
MENG B B, YUAN D D, XU S L. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation [J]. International Journal of Mechanical Sciences, 2019, 151: 724-732. doi: 10.1016/j.ijmecsci.2018.12.022
|
[58] |
ZHU B, ZHAO D, ZHANG Z J, et al. Atomic study on deformation behavior and anisotropy effect of 3C-SiC under nanoindentation [J]. Journal of Materials Research and Technology, 2024, 28: 2636-2647. doi: 10.1016/j.jmrt.2023.12.081
|
[59] |
SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: Formation of prismatic loops [J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
|
[60] |
SZLUFARSKA I, KALIA R K, NAKANO A, et al. Atomistic processes during nanoindentation of amorphous silicon carbide [J]. Applied Physics Letters, 2005, 86(2): 21915. doi: 10.1063/1.1849843
|
[61] |
TIAN Z G, CHEN X, XU X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045104. doi: 10.1088/2631-7990/abc26c
|
[62] |
王桂莲, 张广辉, 王治国, 等. 纳米抛光碳化硅压力对相变影响的分子动力学模拟 [J]. 机械设计与制造, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009
WANG Guilian, ZHANG Guanghui, WANG Zhiguo, et al. Effect of pressure changes on the nano-polishing process of silicon carbide based on molecular dynamics [J]. Machinery Design & Manufacture, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009
|
[63] |
梁杰. 单晶SiC纳米压入 / 刻划研究[D]. 长沙: 长沙理工大学, 2022.
LIANG Jie. Research on nanoindentation / nanoscratch of single crystal SiC [D]. Changsha: Changsha University of Science & Technology, 2022.
|
[64] |
SHI X L, PAN G S, ZHOU Y, et al. Extended study of the atomic step-terrace structure on hexagonal SiC (0001) by chemical-mechanical planarization [J]. Applied Surface Science, 2013, 284: 195-206. doi: 10.1016/j.apsusc.2013.07.080
|
[65] |
DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001) [J]. Scientific Reports, 2015, 5(1): 8747. doi: 10.1038/srep08947
|
[66] |
HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates [J]. Materials Science Forum, 2004, 457/458/459/460: 805-808. doi: 10.4028/www.scientific.net/MSF.457-460.805
|
[67] |
LEE H S, JEONG H D. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces [J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 485-490. doi: 10.1016/j.cirp.2009.03.115
|
[68] |
唐爱玲, 苑泽伟, 唐美玲, 等. 磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响 [J]. 金刚石与磨料磨具工程, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
TANG Ailing, YUAN Zewei, TANG Meiling, et al. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP [J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
|
[69] |
HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding of the effect of wear particles removal from the surface on grinding silicon carbide by molecular dynamics simulations [J]. Diamond and Related Materials, 2023, 137: 110150. doi: 10.1016/j.diamond.2023.110150
|
[70] |
CHEN H, WANG C, CHEN J, et al. Changing torque-force synchronization condition for abrasive particle improves material removal during silicon carbide abrasive machining [J]. Tribology International, 2024, 192: 109247. doi: 10.1016/j.triboint.2023.109247
|
[71] |
ZHOU Y Q, HUANG Y H, LI J M, et al. The effects of abrasive moving speed and motion mode on the thinning mechanism of SiC in three-body contact [J]. Physica Scripta, 2023, 98(11): 115403. doi: 10.1088/1402-4896/acfc6d
|
[72] |
ZHOU Y Q, HUANG Y H, LI J M, et al. The effect of contact types on SiC polishing process [J]. Materials Science in Semiconductor Processing, 2022, 147: 106709. doi: 10.1016/j.mssp.2022.106709
|
[73] |
ZHOU Y Q, HUANG Y H, LI J M, et al. Polishing process of 4H-SiC under different pressures in a water environment [J]. Diamond and Related Materials, 2023, 133: 109710. doi: 10.1016/j.diamond.2023.109710
|
[74] |
HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding the role of surface mechanical properties in SiC surface machining [J]. Materials Science in Semiconductor Processing, 2023, 163: 107594. doi: 10.1016/j.mssp.2023.107594
|
[75] |
WANG H Q, NIU F L, CHEN J P, et al. High efficiency polishing of silicon carbide by applying reactive non-aqueous fluids to fixed abrasive pads [J]. Ceramics International, 2022, 48(5): 7273-7282. doi: 10.1016/j.ceramint.2021.11.288
|
[76] |
LUO Q F, LU J, XU X P. A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools [J]. Wear, 2016350/351: 99-106. doi: 10.1016/j.wear.2016.01.014
|
[77] |
MURATA J, HAYAMA K, TAKIZAWA M. Environment-friendly electrochemical mechanical polishing using solid polymer electrolyte / CeO2 composite pad for highly efficient finishing of 4H-SiC (0001) surface [J]. Applied Surface Science, 2023, 625: 157190. doi: 10.1016/j.apsusc.2023.157190
|
[78] |
WU Z H, ZHANG L C, YANG S Y, et al. Effects of grain size and protrusion height on the surface integrity generation in the nanogrinding of 6H-SiC [J]. Tribology International, 2022, 171: 107563. doi: 10.1016/j.triboint.2022.107563
|
[79] |
ZHOU P, SHI X D, LI J, et al. Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process [J]. Ceramics International, 2019, 45(12): 14614-14624. doi: 10.1016/j.ceramint.2019.04.180
|
[80] |
ZHOU P, ZHU N N, XU C Y, et al. Mechanical removal of SiC by multi-abrasive particles in fixed abrasive polishing using molecular dynamics simulation [J]. Computational Materials Science, 2021, 191: 110311. doi: 10.1016/j.commatsci.2021.110311
|
[81] |
ISHIKAWA Y, MATSUMOTO Y, NISHIDA Y, et al. Surface treatment of silicon carbide using TiO2(IV) photocatalyst [J]. Journal of the American Chemical Society, 2003, 125(21): 6558-6562. doi: 10.1021/ja020359i
|
[82] |
LIU W T, LU J B, XIONG Q, et al. Investigation on influence of polishing disc materials in UV-catalytic polishing of single crystal diamond [J]. Diamond and Related Materials, 2024, 141: 110678. doi: 10.1016/j.diamond.2023.110678
|
[83] |
ZHOU Y, PAN G S, ZOU C L, et al. Planarization of SiC wafer using photo-catalyst incorporated pad [C] / / International Conference on Planarization / CMP Technology, Leuven Belgium: ICPT 2017: 165-170.
|
[84] |
YUAN Z W, TANG M L, WANG Y, et al. Atomistic removal mechanisms of nano polishing single-crystal SiC in hydroxyl free radical aqueous solution [J]. Physica Scripta, 2023, 98(8): 085404. doi: 10.1088/1402-4896/acdbf0
|
[85] |
HE Y, YUAN Z W, TANG M L, et al. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC [J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(24): 11464-11478. doi: 10.1177/09544062221117953
|
[86] |
TOKUMURA M, MORITO R, HATAYAMA R, et al. Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: Dynamic change of hydroxyl radical concentration [J]. Applied Catalysis B: Environmental, 2011, 106(3): 565-576. doi: 10.1016/j.apcatb.2011.06.017
|
[87] |
BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
|
[88] |
LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction [J]. Precision Engineering, 2018, 52: 221-226. doi: 10.1016/j.precisioneng.2017.12.011
|
[89] |
LIANG H Z, LU J B, PAN J S, et al. Material removal process of single-crystal SiC in chemical-magnetorheological compound finishing [J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5/6/7/8): 2939-2948. doi: 10.1007/s00170-017-1098-z
|
[90] |
LI X, WU X J, WU P F, et al. Effects of polishing media on the surface chemical and micromechanical properties of SiC [J]. Computational Materials Science, 2024, 233: 112753. doi: 10.1016/j.commatsci.2023.112753
|
[91] |
YANG S Y, LI X L, ZHAO Y T, et al. MD simulation of chemically enhanced polishing of 6H-SiC in aqueous H2O2 [J]. Journal of Manufacturing Processes, 2023, 107: 515-528. doi: 10.1016/j.jmapro.2023.10.056
|
[92] |
ZHOU Y Q, HUANG Y H, LI J M, et al. Investigation of the chemical action mechanism based on reactive force field in SiC chemical–mechanical polishing process [J]. Applied Surface Science, 2024, 646: 158927. doi: 10.1016/j.apsusc.2023.158927
|
[93] |
MORISHITA T, KAYANUMA M, NAKAMURA T, et al. Cooperative reaction of hydrogen-networked water molecules at the SiC–H2O2 solution interface: Microscopic insights from Ab initio molecular dynamics [J]. The Journal of Physical Chemistry C, 2022, 126(30): 12441-12449. doi: 10.1021/acs.jpcc.2c02464
|
[94] |
TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0 0 0 1 and 0 0 0 −1) with water molecules in nanoscale polishing [J]. Applied Surface Science, 2023, 607: 903-912. doi: 10.1016/j.apsusc.2022.155090
|
[95] |
LUO Q F, LU J, JIANG F, et al. Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing [J]. Nanoscale, 2023, 15(38): 15675-15685. doi: 10.1039/D3NR02353B
|
[96] |
ZHANG P F, ZHANG Y L. Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculations [J]. Materials Today Communications, 2021, 26: 102072. doi: 10.1016/j.mtcomm.2021.102072
|
[97] |
CHEN H B, CHEN J P, WU J X, et al. ReaxFF molecular dynamics simulation and experimental validation about chemical reactions of water and alcohols on SiC surface [J]. Ceramics International, 2024, 50(3): 4332-4349. doi: 10.1016/j.ceramint.2023.11.070
|
[98] |
SHEN J F, CHEN H B, CHEN J P, et al. Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries [J]. Ceramics International, 2023, 49(5): 7274-7283. doi: 10.1016/j.ceramint.2022.10.193
|