CN 41-1243/TG ISSN 1006-852X
Volume 45 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Jiayu, MENG Erchao, SUN Jianlin, JI Jianzhong. Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070
Citation: ZHANG Jiayu, MENG Erchao, SUN Jianlin, JI Jianzhong. Advance on molecular dynamics simulations of precision polishing of SiC[J]. Diamond & Abrasives Engineering, 2025, 45(4): 504-516. doi: 10.13394/j.cnki.jgszz.2024.0070

Advance on molecular dynamics simulations of precision polishing of SiC

doi: 10.13394/j.cnki.jgszz.2024.0070
More Information
  • Received Date: 2024-04-17
  • Accepted Date: 2024-07-04
  • Rev Recd Date: 2024-06-14
  • Available Online: 2024-07-04
  •   Significance  Silicon carbide (SiC), as a representative material of third-generation semiconductors, holds vast potential for applications in microelectronics, optoelectronics, aerospace, and energy. However, its high hardness and chemical stability pose significant challenges for processing. Chemical mechanical polishing (CMP) is a crucial technology for planarizing SiC substrates. It can effectively remove the damaged layer and impurities on the wafer surface, achieve a high degree of planarization, thereby enhance the performance and reliability of SiC devices. Extensive research has been conducted on CMP processes, yet the mechanisms of interaction and synergy among abrasives, solution media, and SiC surfaces remain unclear. Molecular dynamics (MD) simulation, based on Newton's laws of motion and the principles of quantum mechanics, is a simulation method used to reveal the interactions between the microscopic structure and properties of matter. It is currently widely applied in the study of SiC surface removal mechanisms. By simulating the scratching behavior of abrasives on SiC surfaces, changes in material morphology, crystal structure, temperature, cutting force, and potential energy can be observed, thereby providing deeper insights into polishing mechanisms. This in-depth understanding of polishing mechanisms aids in optimizing polishing process parameters, improving polishing efficiency, and surface quality. Meanwhile, during the SiC CMP process, certain components in the polishing solution interact with the SiC surface, potentially involving a series of chemical reactions. MD simulation can reveal the detailed mechanisms of these chemical reactions, including the reaction pathways, reaction rates, and reaction products, thereby facilitating a deeper understanding of the material removal mechanism during the polishing process and providing a theoretical basis for optimizing polishing processes.  Progress  The article first analyzes the potential functions commonly used in MD simulations for SiC precision polishing and summarizes their application fields. It then integrates and analyzes existing MD simulation studies on SiC CMP. MD simulations for SiC substrate precision polishing are mainly classified into three categories: SiC material properties, abrasive grinding, and SiC surface chemical reactions. The Tersoff potential function has been widely applied in the preparation and properties of SiC materials, demonstrating excellent simulation results. It has become the most popular potential function for MD simulations of SiC materials. The Tersoff / ZBL potential function enhances the Tersoff potential function by incorporating the ZBL potential, thus adding short-range interactions and providing a more accurate description of short-range atomic collisions. The ABOP potential function, based on the Tersoff potential function, allows for the breaking of chemical bonds, making it more suitable for simulating wear behavior. The Vashishta potential function is well-suited for accurately simulating the deformation of ionic and covalent bonds in 3C-SiC, including bending and stretching. It is widely used in simulations involving impact behavior and nanoindentation of SiC. The advantage of the ReaxFF lies in its ability to simulate the formation and breaking of bonds during chemical reactions, making it suitable for simulating chemical reactions, adsorption, and other phenomena on SiC surfaces.  Conclusions and Prospects  Currently, many aspects of the CMP mechanism of SiC materials remain unclear. MD simulations can be utilized to study the interaction mechanisms between liquids, oxides, and surfaces during CMP, such as charge transfer and surface adsorption. Most research has focused on the mechanical interactions between abrasives and SiC surfaces, with relatively little attention paid to chemical reaction mechanisms. Future research will emphasize using the ReaxFF through MD simulations to study the reaction mechanism of SiC under various conditions, developing more potential functions to accommodate different polishing conditions, and establishing comprehensive models to consider the impact of multiple factors on surface interactions. During MD simulations of SiC oxidation mechanisms, different potential functions have distinct application fields. Although the ReaxFF reactive force field can effectively simulate SiC surface oxidation reactions, using the Tersoff potential function to simulate the interaction between SiC and abrasives is more reasonable. Due to the high modeling proficiency required to establish mixed potential function models combining the ReaxFF reactive force field with other potential functions, researchers often adopt the ReaxFF single intermolecular potential for calculations. If oxidation reactions and abrasive grinding occur simultaneously during the calculation process, it may not accurately describe the SiC surface interaction mechanisms. Therefore, combining the ReaxFF with other potential functions to achieve MD simulation of chemical mechanical polishing under the combined action of multiple factors will be a direction for future research.

     

  • loading
  • [1]
    CHEN X F, YANG X L, XIE X J, et al. Research progress of large size SiC single crystal materials and devices [J]. Light, Science & Applications, 2023, 12(1): 28. doi: 10.1038/s41377-022-01037-7
    [2]
    WANG J L. Recent research progress in preparation and application of silicon carbide [J]. Open Journal of Natural Science, 2022, 10: 220-226. doi: 10.12677/OJNS.2022.103028
    [3]
    WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers [J]. Advanced Materials Interfaces, 2023, 10(13): 2202369. doi: 10.1002/admi.202202369
    [4]
    TSAI M Y, WANG S M, TSAI C C, et al. Investigation of increased removal rate during polishing of single-crystal silicon carbide [J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1511-1520. doi: 10.1007/s00170-015-7023-4
    [5]
    HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies: Micromachines [J]. Micromachines, 2022, 13(10): 1752. doi: 10.3390/mi13101752
    [6]
    ZHANG Q X, PAN J S, ZHANG X W, et al. Tribological behavior of 6H–SiC wafers in different chemical mechanical polishing slurries [J]. Wear, 2021, 472 / 473: 203649. doi: 10.1016/j.wear.2021.203649
    [7]
    路家斌, 曹纪阳, 邓家云, 等. Fe3O4特性对单晶SiC固相芬顿反应研磨丸片性能的影响 [J]. 金刚石与磨料磨具工程, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008

    LU Jiabin, CAO Jiyang, DENG Jiayun, et al. Effect of Fe3O4 characteristics on properties of solid-phase Fenton reaction lapping pellets for single-crystal SiC [J]. Diamond & Abrasives Engineering, 2022, 42(2): 223-232. doi: 10.13394/j.cnki.jgszz.2022.0008
    [8]
    GAO B, GUO D, ZHANG X, et al. Picosecond laser-assisted chemical mechanical polishing (CMP): Aiming at the Si-face of single-crystal 6H-SiC wafer [J]. ECS Journal of Solid State Science and Technology, 2021, 10(4): 044008. doi: 10.1149/2162-8777/abf726
    [9]
    XIE X Z, PENG Q F, CHEN G P, et al. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process [J]. Ceramics International, 2021, 47(10, Part A): 13322-13330. doi: 10.1016/j.ceramint.2021.01.188
    [10]
    路家斌, 熊强, 阎秋生, 等. 6H-SiC单晶紫外光催化抛光中光照方式和磨料的影响 [J]. 金刚石与磨料磨具工程, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006

    LU Jiabin, XIONG Qiang, YAN Qiusheng, et al. Effects of lights modes and abrasives on UV-photocatalysis assisted polishing of 6H-SiC single crystal [J]. Diamond & Abrasives Engineering, 2019, 39(3): 29-37. doi: 10.13394/j.cnki.jgszz.2019.3.0006
    [11]
    GAO B, ZHAI W J, ZHAI Q, et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency [J]. ECS Journal of Solid State Science and Technology, 2019, 8(11): 677-684. doi: 10.1149/2.0031911jss
    [12]
    LUO Y R, XIONG Q, LU J B, et al. Chemical mechanical polishing exploiting metal electrochemical corrosion of single-crystal SiC [J]. Materials Science in Semiconductor Processing, 2022, 152: 107067. doi: 10.1016/j.mssp.2022.107067
    [13]
    王磊, 吴润泽, 牛林, 等. 碳化硅晶体电化学机械抛光工艺研究 [J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029

    WANG Lei, WU Runze, NIU Lin, et al. Study on electrochemical mechanical polishing process of silicon carbide crystal [J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
    [14]
    YANG X Z, YANG X, GU H Y, et al. Efficient and slurryless ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers [J]. Ceramics International, 2022, 48(6): 7570-7583. doi: 10.1016/j.ceramint.2021.11.301
    [15]
    YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface [J]. Electrochemistry Communi-cations, 2019, 100: 1-5. doi: 10.1016/j.elecom.2019.01.012
    [16]
    WU Y S, PAN J S, WANG H, et al. Study of corrosion rate control mechanism based on magnetorheological electro-Fenton composite polishing of single-crystal GaN wafers [J]. Journal of Solid State Electrochemistry, 2023, 27(8): 2163-2176. doi: 10.1007/s10008-023-05468-z
    [17]
    DENG J Y, LU J B, YAN Q S, et al. Preparation and polishing properties of water-based magnetorheological chemical finishing fluid with high catalytic activity for single-crystal SiC [J]. Journal of Intelligent Material Systems and Structures, 2020, 32(13): 1441-1451. doi: 10.1177/1045389X20975503
    [18]
    梁华卓, 付有志, 何俊峰, 等. 单晶SiC基片的磁流变化学复合抛光 [J]. 金刚石与磨料磨具工程, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108

    LIANG Huazhuo, FU Youzhi, HE Junfeng, et al. Magnetorheological chemical compound polishing of single crystal SiC substrate [J]. Diamond & Abrasives Engineering, 2022, 42(1): 129-135. doi: 10.13394/j.cnki.jgszz.2021.0108
    [19]
    HU D, LI H L, LU J B, et al. Study on heterogeneous Fenton reaction parameters for polishing single-crystal SiC using magnetorheological elastomers polishing pads [J]. Smart Materials and Structures, 2023, 32(2): 025003. doi: 10.1088/1361-665X/acacd8
    [20]
    GAO B, ZHAI W J, ZHAI Q, et al. Novel photoelectrochemically combined mechanical polishing technology for scratch-free 4H-SiC surface by using CeO2-TiO2 composite photocatalysts and PS / CeO2 core / shell abrasives [J]. Applied Surface Science, 2021, 570: 151141. doi: 10.1016/j.apsusc.2021.151141
    [21]
    SHI X D, LU Y Q, CHAUSSENDE D, et al. Wet-oxidation-assisted chemical mechanical polishing and high-temperature thermal annealing for low-loss 4H-SiC integrated photonic devices [J]. Materials, 2023, 16(6): 2324. doi: 10.3390/ma16062324
    [22]
    张晨. SiC单晶超声辅助电解液等离子体抛光仿真及实验研究 [D]. 西安: 西安理工大学, 2023.

    ZHANG Chen. Simulation and experimental study on ultrasonic-assisted electrolyte plasma polishing of SiC single crystal [D]. Xi'an: Xi'an University of Technology, 2023.
    [23]
    何艳, 苑泽伟, 段振云, 等. 单晶SiC的电助光催化抛光及去除机理 [J]. 中国机械工程, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005

    HE Yan, YUAN Zewei, DUAN Zhenyun, et al. Electrical enhanced photocatalysis polishing and removal mechanism for single crystal SiC [J]. China Mechanical Engineering, 2020, 31(4): 403-409. doi: 10.3969/j.issn.1004-132X.2020.04.005
    [24]
    TSAI M Y, HOO Z T. Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO2 slurries [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1519-1530. doi: 10.1007/s00170-019-04223-x
    [25]
    WANG W T, ZHANG B G, SHI Y H, et al. Improved chemical mechanical polishing performance in 4H-SiC substrate by combining novel mixed abrasive slurry and photocatalytic effect [J]. Applied Surface Science, 2022, 575: 151676. doi: 10.1016/j.apsusc.2021.151676
    [26]
    TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566-5568. doi: 10.1103/PhysRevB.39.5566
    [27]
    WANG J, LU C, WANG Q, et al. Understanding large plastic deformation of SiC nanowires at room temperature [J]. EPL(Europhysics Letters), 2011, 95(6): 63003-1-63003-5. doi: 10.1209/0295-5075/95/63003
    [28]
    JIN E Z, DU S Y, LI M, et al. Influence of helium atoms on the shear behavior of the fiber / matrix interphase of SiC / SiC composite [J]. Journal of Nuclear Materials, 2016, 479: 504-514. doi: 10.1016/j.jnucmat.2016.07.041
    [29]
    LIN K X, ZENG M, CHEN H M, et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites [J]. International Journal of Mechanical Sciences, 2022, 231: 107580. doi: 10.1016/j.ijmecsci.2022.107580
    [30]
    DEVANATHAN R, RUBIA T D D L, WEBER W J. Displacement threshold energies in β-SiC [J]. Journal of Nuclear Materials, 1998, 253(1/2/3): 47-52. doi: 10.1016/S0022-3115(97)00304-8
    [31]
    BRENNER D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990, 42(15): 9458-9471. doi: 10.1103/PhysRevB.42.9458
    [32]
    LI W H, YAO X H. The spallation of single crystal SiC: The effects of shock pulse duration [J]. Computational Materials Science, 2016, 124: 151-159. doi: 10.1016/j.commatsci.2016.07.028
    [33]
    VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: A molecular-dynamics study of structural correlations [J]. Physical Review B, 1990, 41(17): 12197-12209. doi: 10.1103/PhysRevB.41.12197
    [34]
    VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide [J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
    [35]
    SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions [J]. NPJ Computational Materials, 2016, 2(1): 15011. doi: 10.1038/npjcompumats.2015.11
    [36]
    NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I [J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. doi: 10.1021/jp306391p
    [37]
    DONG X Y, SHIN Y C. Predictions of thermal conductivity and degradation of irradiated SiC / SiC composites by materials-genome-based multiscale modeling [J]. Journal of Nuclear Materials, 2018, 512: 268-275. doi: 10.1016/j.jnucmat.2018.10.021
    [38]
    NIU X M, BIAN J, CHEN X H, et al. Molecular dynamics simulation on PyC interfacial failure mechanism and shear strength of SiC / SiC composites [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(8): 85008. doi: 10.1088/1361-651X/ac2478
    [39]
    WANG H X, GAO S, KANG R K, et al. Mechanical load-induced atomic-scale deformation evolution and mechanism of SiC polytypes using molecular dynamics simulation [J]. Nanomaterials, 2022, 12(14): 2489. doi: 10.3390/nano12142489
    [40]
    WANG R Q, HAN J B, MAO J X, et al. A molecular dynamics based cohesive zone model for interface failure under monotonic tension of 3D four direction SiCf / SiC composites [J]. Composite Structures, 2021, 274: 114397. doi: 10.1016/j.compstruct.2021.114397
    [41]
    AI T C, LIU J, QIU H J, et al. Removal behavior and performance analysis of defective silicon carbide in nano-grinding [J]. Precision Engineering, 2021, 72: 858-869. doi: 10.1016/j.precisioneng.2021.07.011
    [42]
    涂睿, 李盈盈, 孔淑妍, 等. 分子动力学模拟辐照对碳化硅裂纹扩展过程的影响 [J]. 材料科学与工程学报, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003

    TU Rui, LI Yingying, KONG Shuyan, et al. Molecular dynamics simulation of lrradiation effects on the crackpropagation in 3C-SiC [J]. Journal of Materials Science and Engineering, 2023, 41(5): 710-717. doi: 10.14136/j.cnki.issn1673-2812.2023.05.003
    [43]
    WALLACE J, CHEN D, WANG J, et al. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC / graphite interface [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 307: 81-85. doi: 10.1016/j.nimb.2013.02.036
    [44]
    LI Y Y, XIAO W, LI H L. Molecular dynamics simulation of C / Si ratio effect on the irradiation swelling of β-SiC [J]. Journal of Nuclear Materials, 2016, 480: 75-79. doi: 10.1016/j.jnucmat.2016.08.004
    [45]
    KANG Q, FANG X D, WU C, et al. Mechanical properties and indentation-induced phase transformation in 4H–SiC implanted by hydrogen ions [J]. Ceramics International, 2022, 48(11): 15334-15347. doi: 10.1016/j.ceramint.2022.02.067
    [46]
    LI Y Y, LI Y, XIAO W. Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations [J]. Nuclear Engineering and Technology, 2019, 51(3): 769-775. doi: 10.1016/j.net.2018.12.010
    [47]
    WU W L, HU Y, MENG X S, et al. Molecular dynamics simulation of ion-implanted single-crystal 3C-SiC nano-indentation [J]. Journal of Manufacturing Processes, 2022, 79: 356-368. doi: 10.1016/j.jmapro.2022.04.071
    [48]
    LIU B, LI X L, KONG R J, et al. A numerical analysis of ductile deformation during nanocutting of silicon carbide via molecular dynamics simulation [J]. Materials, 2022, 15(6): 2325. doi: 10.3390/ma15062325
    [49]
    KHAN T A, BURR P A, PAYNE D, et al. Molecular dynamic simulation on temperature evolution of SiC under directional microwave radiation [J]. Journal of Physics: Condensed Matter, 2022, 34(19): 195701. doi: 10.1088/1361-648X/ac553c
    [50]
    CHEN W, LI L S. The study of the optical phonon frequency of 3C-SiC by molecular dynamics simulations with deep neural network potential [J]. Journal of Applied Physics, 2021, 129(24): 244104. doi: 10.1063/5.0049464
    [51]
    UTKIN A V, FOMIN V M. Molecular dynamics study of silicon carbide properties under external dynamic loading [J]. AIP Conference Proceedings, 2017, 1983(1): 30018. doi: 10.1063/1.5007476
    [52]
    TRANH D T N, HOANG V V, HANH T T T. Modeling glassy SiC nanoribbon by rapidly cooling from the liquid: An affirmation of appropriate potentials [J]. Physica B: Condensed Matter, 2021, 608: 412746. doi: 10.1016/j.physb.2020.412746
    [53]
    FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading [J]. Mechanics of Materials, 2022, 164: 104139. doi: 10.1016/j.mechmat.2021.104139
    [54]
    DO T T, FANG T H. Deep insights into interaction behaviour and material removal of β-SiC wafer in nanoscale polishing [J]. Tribology International, 2023, 186: 108639. doi: 10.1016/j.triboint.2023.108639
    [55]
    BIAN Z T, GAO T H, GAO Y, et al. Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations [J]. Diamond and Related Materials, 2022, 129: 109368. doi: 10.1016/j.diamond.2022.109368
    [56]
    GAO S, WANG H X, HUANG H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. International Journal of Mechanical Sciences, 2023, 247: 108147. doi: 10.1016/j.ijmecsci.2023.108147
    [57]
    MENG B B, YUAN D D, XU S L. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation [J]. International Journal of Mechanical Sciences, 2019, 151: 724-732. doi: 10.1016/j.ijmecsci.2018.12.022
    [58]
    ZHU B, ZHAO D, ZHANG Z J, et al. Atomic study on deformation behavior and anisotropy effect of 3C-SiC under nanoindentation [J]. Journal of Materials Research and Technology, 2024, 28: 2636-2647. doi: 10.1016/j.jmrt.2023.12.081
    [59]
    SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: Formation of prismatic loops [J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
    [60]
    SZLUFARSKA I, KALIA R K, NAKANO A, et al. Atomistic processes during nanoindentation of amorphous silicon carbide [J]. Applied Physics Letters, 2005, 86(2): 21915. doi: 10.1063/1.1849843
    [61]
    TIAN Z G, CHEN X, XU X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045104. doi: 10.1088/2631-7990/abc26c
    [62]
    王桂莲, 张广辉, 王治国, 等. 纳米抛光碳化硅压力对相变影响的分子动力学模拟 [J]. 机械设计与制造, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009

    WANG Guilian, ZHANG Guanghui, WANG Zhiguo, et al. Effect of pressure changes on the nano-polishing process of silicon carbide based on molecular dynamics [J]. Machinery Design & Manufacture, 2021(2): 35-39. doi: 10.19356/j.cnki.1001-3997.2021.02.009
    [63]
    梁杰. 单晶SiC纳米压入 / 刻划研究[D]. 长沙: 长沙理工大学, 2022.

    LIANG Jie. Research on nanoindentation / nanoscratch of single crystal SiC [D]. Changsha: Changsha University of Science & Technology, 2022.
    [64]
    SHI X L, PAN G S, ZHOU Y, et al. Extended study of the atomic step-terrace structure on hexagonal SiC (0001) by chemical-mechanical planarization [J]. Applied Surface Science, 2013, 284: 195-206. doi: 10.1016/j.apsusc.2013.07.080
    [65]
    DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001) [J]. Scientific Reports, 2015, 5(1): 8747. doi: 10.1038/srep08947
    [66]
    HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates [J]. Materials Science Forum, 2004, 457/458/459/460: 805-808. doi: 10.4028/www.scientific.net/MSF.457-460.805
    [67]
    LEE H S, JEONG H D. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces [J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 485-490. doi: 10.1016/j.cirp.2009.03.115
    [68]
    唐爱玲, 苑泽伟, 唐美玲, 等. 磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响 [J]. 金刚石与磨料磨具工程, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053

    TANG Ailing, YUAN Zewei, TANG Meiling, et al. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP [J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
    [69]
    HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding of the effect of wear particles removal from the surface on grinding silicon carbide by molecular dynamics simulations [J]. Diamond and Related Materials, 2023, 137: 110150. doi: 10.1016/j.diamond.2023.110150
    [70]
    CHEN H, WANG C, CHEN J, et al. Changing torque-force synchronization condition for abrasive particle improves material removal during silicon carbide abrasive machining [J]. Tribology International, 2024, 192: 109247. doi: 10.1016/j.triboint.2023.109247
    [71]
    ZHOU Y Q, HUANG Y H, LI J M, et al. The effects of abrasive moving speed and motion mode on the thinning mechanism of SiC in three-body contact [J]. Physica Scripta, 2023, 98(11): 115403. doi: 10.1088/1402-4896/acfc6d
    [72]
    ZHOU Y Q, HUANG Y H, LI J M, et al. The effect of contact types on SiC polishing process [J]. Materials Science in Semiconductor Processing, 2022, 147: 106709. doi: 10.1016/j.mssp.2022.106709
    [73]
    ZHOU Y Q, HUANG Y H, LI J M, et al. Polishing process of 4H-SiC under different pressures in a water environment [J]. Diamond and Related Materials, 2023, 133: 109710. doi: 10.1016/j.diamond.2023.109710
    [74]
    HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding the role of surface mechanical properties in SiC surface machining [J]. Materials Science in Semiconductor Processing, 2023, 163: 107594. doi: 10.1016/j.mssp.2023.107594
    [75]
    WANG H Q, NIU F L, CHEN J P, et al. High efficiency polishing of silicon carbide by applying reactive non-aqueous fluids to fixed abrasive pads [J]. Ceramics International, 2022, 48(5): 7273-7282. doi: 10.1016/j.ceramint.2021.11.288
    [76]
    LUO Q F, LU J, XU X P. A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools [J]. Wear, 2016350/351: 99-106. doi: 10.1016/j.wear.2016.01.014
    [77]
    MURATA J, HAYAMA K, TAKIZAWA M. Environment-friendly electrochemical mechanical polishing using solid polymer electrolyte / CeO2 composite pad for highly efficient finishing of 4H-SiC (0001) surface [J]. Applied Surface Science, 2023, 625: 157190. doi: 10.1016/j.apsusc.2023.157190
    [78]
    WU Z H, ZHANG L C, YANG S Y, et al. Effects of grain size and protrusion height on the surface integrity generation in the nanogrinding of 6H-SiC [J]. Tribology International, 2022, 171: 107563. doi: 10.1016/j.triboint.2022.107563
    [79]
    ZHOU P, SHI X D, LI J, et al. Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process [J]. Ceramics International, 2019, 45(12): 14614-14624. doi: 10.1016/j.ceramint.2019.04.180
    [80]
    ZHOU P, ZHU N N, XU C Y, et al. Mechanical removal of SiC by multi-abrasive particles in fixed abrasive polishing using molecular dynamics simulation [J]. Computational Materials Science, 2021, 191: 110311. doi: 10.1016/j.commatsci.2021.110311
    [81]
    ISHIKAWA Y, MATSUMOTO Y, NISHIDA Y, et al. Surface treatment of silicon carbide using TiO2(IV) photocatalyst [J]. Journal of the American Chemical Society, 2003, 125(21): 6558-6562. doi: 10.1021/ja020359i
    [82]
    LIU W T, LU J B, XIONG Q, et al. Investigation on influence of polishing disc materials in UV-catalytic polishing of single crystal diamond [J]. Diamond and Related Materials, 2024, 141: 110678. doi: 10.1016/j.diamond.2023.110678
    [83]
    ZHOU Y, PAN G S, ZOU C L, et al. Planarization of SiC wafer using photo-catalyst incorporated pad [C] / / International Conference on Planarization / CMP Technology, Leuven Belgium: ICPT 2017: 165-170.
    [84]
    YUAN Z W, TANG M L, WANG Y, et al. Atomistic removal mechanisms of nano polishing single-crystal SiC in hydroxyl free radical aqueous solution [J]. Physica Scripta, 2023, 98(8): 085404. doi: 10.1088/1402-4896/acdbf0
    [85]
    HE Y, YUAN Z W, TANG M L, et al. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC [J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(24): 11464-11478. doi: 10.1177/09544062221117953
    [86]
    TOKUMURA M, MORITO R, HATAYAMA R, et al. Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: Dynamic change of hydroxyl radical concentration [J]. Applied Catalysis B: Environmental, 2011, 106(3): 565-576. doi: 10.1016/j.apcatb.2011.06.017
    [87]
    BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
    [88]
    LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction [J]. Precision Engineering, 2018, 52: 221-226. doi: 10.1016/j.precisioneng.2017.12.011
    [89]
    LIANG H Z, LU J B, PAN J S, et al. Material removal process of single-crystal SiC in chemical-magnetorheological compound finishing [J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5/6/7/8): 2939-2948. doi: 10.1007/s00170-017-1098-z
    [90]
    LI X, WU X J, WU P F, et al. Effects of polishing media on the surface chemical and micromechanical properties of SiC [J]. Computational Materials Science, 2024, 233: 112753. doi: 10.1016/j.commatsci.2023.112753
    [91]
    YANG S Y, LI X L, ZHAO Y T, et al. MD simulation of chemically enhanced polishing of 6H-SiC in aqueous H2O2 [J]. Journal of Manufacturing Processes, 2023, 107: 515-528. doi: 10.1016/j.jmapro.2023.10.056
    [92]
    ZHOU Y Q, HUANG Y H, LI J M, et al. Investigation of the chemical action mechanism based on reactive force field in SiC chemical–mechanical polishing process [J]. Applied Surface Science, 2024, 646: 158927. doi: 10.1016/j.apsusc.2023.158927
    [93]
    MORISHITA T, KAYANUMA M, NAKAMURA T, et al. Cooperative reaction of hydrogen-networked water molecules at the SiC–H2O2 solution interface: Microscopic insights from Ab initio molecular dynamics [J]. The Journal of Physical Chemistry C, 2022, 126(30): 12441-12449. doi: 10.1021/acs.jpcc.2c02464
    [94]
    TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0 0 0 1 and 0 0 0 −1) with water molecules in nanoscale polishing [J]. Applied Surface Science, 2023, 607: 903-912. doi: 10.1016/j.apsusc.2022.155090
    [95]
    LUO Q F, LU J, JIANG F, et al. Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing [J]. Nanoscale, 2023, 15(38): 15675-15685. doi: 10.1039/D3NR02353B
    [96]
    ZHANG P F, ZHANG Y L. Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculations [J]. Materials Today Communications, 2021, 26: 102072. doi: 10.1016/j.mtcomm.2021.102072
    [97]
    CHEN H B, CHEN J P, WU J X, et al. ReaxFF molecular dynamics simulation and experimental validation about chemical reactions of water and alcohols on SiC surface [J]. Ceramics International, 2024, 50(3): 4332-4349. doi: 10.1016/j.ceramint.2023.11.070
    [98]
    SHEN J F, CHEN H B, CHEN J P, et al. Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries [J]. Ceramics International, 2023, 49(5): 7274-7283. doi: 10.1016/j.ceramint.2022.10.193
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1139) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return